SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parks G.K.) "

Sökning: WFRF:(Parks G.K.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arvelius, S., et al. (författare)
  • Statistical study of relationships between dayside high-altitude and high-latitude O+ ion outflows, solar winds, and geomagnetic activity
  • 2005
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 23, s. 1909-1916
  • Tidskriftsartikel (refereegranskat)abstract
    • The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE) and high-latitude (from 70 to ~90 deg invariant latitude, ILAT) polar region. The principal results are: (1) Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2) at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft); (3) however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region.
  •  
2.
  •  
3.
  •  
4.
  • Germany, G A, et al. (författare)
  • Remote determination of auroral energy characteristics during substorm activity
  • 1997
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 24, s. 995-998
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultraviolet auroral images from the Ultraviolet Imager (UVI) onboard the POLAR satellite can be used as quantitative remote diagnostics of the auroral regions, yielding estimates of incident energy characteristics, compositional changes, and other higher order data products. Here incident energy estimates derived from UVI are compared with in situ measurements of the same parameters from an overflight by the DMSP F12 satellite coincident with the UVI image times during substorm activity occurring on May 19, 1996. This event was simultaneously observed by WIND, GEOTAIL, INTERBALL, DMSP and NOAA spacecraft as well as by POLAR.
  •  
5.
  •  
6.
  • Lui, A. T. Y., et al. (författare)
  • Prelude to THEMIS tail conjunction study
  • 2007
  • Ingår i: Annales Geophysicae. - 0992-7689 .- 1432-0576. ; 25:4, s. 1001-1009
  • Tidskriftsartikel (refereegranskat)abstract
    • A close conjunction of several satellites (LANL, GOES. Polar. Geotail, and Cluster) distributed from the geostationary altitude to about 16 R-E downstream in the tail occurred during substorm activity as indicated by global auroral imaging and ground-based magnetometer data. This constellation of satellites resembles what is planned for the THEMIS (Time History of Events and Macroscopic Interactions during Substorms) mission to resolve the substorm controversy on the location of the substorm expansion onset region. In this article, we show in detail the dipolarization and dynamic changes seen by these satellites associated with two onsets of substorm intensification activity. In particular, we find that dipolarization at similar to 16 R-E downstream in the tail can occur with dawnward electric field and without plasma flow, just like some near-Earth dipolarization events reported previously. The spreading of substorm disturbances in the tail coupled with complementary ground observations indicates that the observed time sequence on the onsets of substorm disturbances favors initiation in the near-Earth region for this THEMIS-like conjunction.
  •  
7.
  •  
8.
  • Sitar, R J, et al. (författare)
  • Multi-instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996
  • 1998
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. ; 103, s. 23357-23372
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the analysis of a coordinated set of observations from the POLAR ultraviolet imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, and the DMSP satellite, focused on a traveling convection vortex (TCV) event on July 24, 1996. Starting at approximately 1036 UT, ground magnetometers in Greenland and eastern Canada observe pulsations consistent with the passing overhead of a series of TCV field-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 1137 UT. Images from the UVI instrument show a localized intensification of auroral emissions over central and western Greenland at 1139 UT. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 1158 UT, at which time the intensification fades, These observations are consistent with the westward passage of four pairs of TCVs over central Greenland. The intensification of auroral emissions at 1139 UT is associated with the leading vortex of the fourth TCV pair, thought to be the result of an upward field-aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the field-aligned current systems responsible for the impulsive TCV as they pass through the field of view of the radar. Measurements taken in the solar wind by the Wind spacecraft suggest that a pressure change triggers the onset of TCV activity. A subsequent sudden change in the orientation of the interplanetary magnetic field produces a hot flow anomaly which forms at the bow shock. We believe that the interaction of the hot flow anomaly with the magnetopause intensified the fourth TCV pair and. produced the associated auroral brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet-low latitude boundary layer interface. The ground observations associated with the hot flow anomaly are the first of their kind and provide a mechanism to tie an interplanetary magnetic field orientation change into the existing theory that TCVs result from a deformation of the magnetopause.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy