SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Partanen Jenni) "

Search: WFRF:(Partanen Jenni)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kivimäki, Mika, et al. (author)
  • Climate Change, Summer Temperature, and Heat-Related Mortality in Finland : Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050
  • 2023
  • In: Journal of Environmental Health Perspectives. - : EHP Publishing. - 0091-6765 .- 1552-9924. ; 131:12, s. 1270201-1-1270201-16
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Climate change scenarios illustrate various pathways in terms of global warming ranging from "sustainable development" (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to 'fossil-fueled development' (SSP5-8.5), the worst-case scenario. OBJECTIVES: We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality and projected heat-related mortality burden for the current warming trend and these two scenarios. METHODS: We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants' residential area using a geographic grid at a spatial resolution of formula presented . We examined associations of the summer heat index with risk of death by cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed the related period population attributable fraction (PAF), and projected change in PAF from summers 2000-2018 compared with those in 2030-2050. RESULTS: During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from cardiovascular disease. The multivariable-adjusted rate ratio (RR) for high (formula presented ) vs. reference (formula presented ) heat index was 1.70 (95% CI: 1.28, 2.27) for cardiovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, formula presented (95% CI: 0.96, 1.36), a finding replicated in case-crossover analysis. According to projections for 2030-2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%-7.3%) under the sustainable development scenario, but 7.6% (3.2%-12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual number of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people. DISCUSSION: The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this burden is formula presented times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080.
  •  
2.
  • Stojanovski, Todor, et al. (author)
  • Rethinking Computer-Aided Architectural Design (CAAD) - From Generative Algorithms and Architectural Intelligence to Environmental Design and Ambient Intelligence
  • 2022
  • In: Computer-Aided Architectural Design. - Singapore : Springer Nature. ; , s. 62-83
  • Conference paper (peer-reviewed)abstract
    • Computer-Aided Architectural Design (CAAD) finds its historical precedents in technological enthusiasm for generative algorithms and architectural intelligence. Current developments in Artificial Intelligence (AI) and paradigms in Machine Learning (ML) bring new opportunities for creating innovative digital architectural tools, but in practice this is not happening. CAAD enthusiasts revisit generative algorithms, while professional architects and urban designers remain reluctant to use software that automatically generates architecture and cities. This paper looks at the history of CAAD and digital tools for Computer Aided Design (CAD), Building Information Modeling (BIM) and Geographic Information Systems (GIS) in order to reflect on the role of AI in future digital tools and professional practices. Architects and urban designers have diagrammatic knowledge and work with design problems on symbolic level. The digital tools gradually evolved from CAD to BIM software with symbolical architectural elements. The BIM software works like CAAD (CAD systems for Architects) or digital board for drawing and delivers plans, sections and elevations, but without AI. AI has the capability to process data and interact with designers. The AI in future digital tools for CAAD and Computer-Aided Urban Design (CAUD) can link to big data and develop ambient intelligence. Architects and urban designers can harness the benefits of analytical ambient intelligent AIs in creating environmental designs, not only for shaping buildings in isolated virtual cubicles. However there is a need to prepare frameworks for communication between AIs and professional designers. If the cities of the future integrate spatially analytical AI, are to be made smart or even ambient intelligent, AI should be applied to improving the lives of inhabitants and help with their daily living and sustainability.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view