SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parton Matthew) "

Sökning: WFRF:(Parton Matthew)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Howes, Mark T, et al. (författare)
  • Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells
  • 2010
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 190:4, s. 675-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.
  •  
2.
  • Jonsson, P Andreas, et al. (författare)
  • CuZn-superoxide dismutase in D90A heterozygotes from recessive and dominant ALS pedigrees.
  • 2002
  • Ingår i: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 10:3, s. 327-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in CuZn-superoxide dismutase (CuZn-SOD) have been linked to ALS. In most cases ALS is inherited as a dominant trait and there is marked reduction in CuZn-SOD activity in samples from the patients. The D90A mutation, however, mostly causes ALS as a recessive trait and shows near normal CuZn-SOD activity. A few familial and sporadic ALS cases heterozygous for the D90A mutation have also been found. Haplotype analysis of both types of D90A families has suggested that all recessive cases share a common founder and may carry a protective factor located close to the D90A mutant CuZn-SOD locus. To search for effects of a putative protective factor we analysed erythrocytes from D90A heterozygous individuals for SOD activity by a direct assay, subunit composition by immunoblotting, and zymogram pattern formed by isoelectric focusing and SOD staining. Included were heterozygotes from 17 recessive families, and from 2 dominant families and 4 apparently sporadic cases. The CuZn-SOD activity in the recessive and dominant groups was found to be equal, and 95% of controls. The ratio between mutant and wildtype subunits was likewise equal and 0.8:1 in both groups. The zymograms revealed multiple bands representing homo- and heterodimers. There were, however, no differences between the groups in patterns or in ratios between the molecular forms. In conclusion we find no evidence from analyses in erythrocytes that the putative protective factor in recessive families acts by simply downregulating the synthesis or altering the molecular structure or turnover of the mutant enzyme.
  •  
3.
  • Luo, Yiqi, et al. (författare)
  • Toward more realistic projections of soil carbon dynamics by Earth system models
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:1, s. 40-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy