SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Partridge Daniel) "

Sökning: WFRF:(Partridge Daniel)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
3.
  • Ade, Peter, et al. (författare)
  • The Simons Observatory : science goals and forecasts
  • 2019
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Simons Observatory (SO) is a new cosmic microwave background experiment being built on Cerro Toco in Chile, due to begin observations in the early 2020s. We describe the scientific goals of the experiment, motivate the design, and forecast its performance. SO will measure the temperature and polarization anisotropy of the cosmic microwave background in six frequency bands centered at: 27, 39, 93, 145, 225 and 280 GHz. The initial con figuration of SO will have three small-aperture 0.5-m telescopes and one large-aperture 6-m telescope, with a total of 60,000 cryogenic bolometers. Our key science goals are to characterize the primordial perturbations, measure the number of relativistic species and the mass of neutrinos, test for deviations from a cosmological constant, improve our understanding of galaxy evolution, and constrain the duration of reionization. The small aperture telescopes will target the largest angular scales observable from Chile, mapping approximate to 10% of the sky to a white noise level of 2 mu K-arcmin in combined 93 and 145 GHz bands, to measure the primordial tensor-to-scalar ratio, r, at a target level of sigma(r) = 0.003. The large aperture telescope will map approximate to 40% of the sky at arcminute angular resolution to an expected white noise level of 6 mu K-arcmin in combined 93 and 145 GHz bands, overlapping with the majority of the Large Synoptic Survey Telescope sky region and partially with the Dark Energy Spectroscopic Instrument. With up to an order of magnitude lower polarization noise than maps from the Planck satellite, the high-resolution sky maps will constrain cosmological parameters derived from the damping tail, gravitational lensing of the microwave background, the primordial bispectrum, and the thermal and kinematic Sunyaev-Zel'dovich effects, and will aid in delensing the large-angle polarization signal to measure the tensor-to-scalar ratio. The survey will also provide a legacy catalog of 16,000 galaxy clusters and more than 20,000 extragalactic sources.
  •  
4.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
5.
  • Malavelle, Florent F., et al. (författare)
  • Strong constraints on aerosol-cloud interactions from volcanic eruptions
  • 2017
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 546:7659, s. 485-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets-consistent with expectations-but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around -0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
  •  
6.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Björkman, Mats P., et al. (författare)
  • Nitrate dry deposition in svalbard
  • 2013
  • Ingår i: Tellus. Series B, Chemical and physical meteorology. - : Stockholm University Press. - 0280-6509 .- 1600-0889. ; 65, s. 19071-
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic regions are generally nutrient limited, receiving an extensive part of their bio-available nitrogen from the deposition of atmospheric reactive nitrogen. Reactive nitrogen oxides, as nitric acid (HNO3) and nitrate aerosols (p-NO3), can either be washed out from the atmosphere by precipitation or dry deposited, dissolving to nitrate (NO3-). During winter, NO3- is accumulated in the snowpack and released as a pulse during spring melt. Quantification of NO3- deposition is essential to assess impacts on Arctic terrestrial ecology and for ice core interpretations. However, the individual importance of wet and dry deposition is poorly quantified in the high Arctic regions where in-situ measurements are demanding. In this study, three different methods are employed to quantify NO3- dry deposition around the atmospheric and ecosystem monitoring site, Ny-Alesund, Svalbard, for the winter season (September 2009 to May 2010): (1) A snow tray sampling approach indicates a dry deposition of -10.27 +/- 3.84 mg m(-2) (+/- S.E.); (2) A glacial sampling approach yielded somewhat higher values -30.68 +/- 12.00 mg m(-2); and (3) Dry deposition was also modelled for HNO3 and p-NO3 using atmospheric concentrations and stability observations, resulting in a total combined nitrate dry deposition of -10.76 +/- 1.26 mg m(-2). The model indicates that deposition primarily occurs via HNO3 with only a minor contribution by p-NO3. Modelled median deposition velocities largely explain this difference: 0.63 cm s(-1) for HNO3 while p-NO3 was 0.0025 and 0.16 cm s(-1) for particle sizes 0.7 and 7 mm, respectively. Overall, the three methods are within two standard errors agreement, attributing an average 14% (total range of 2-44%) of the total nitrate deposition to dry deposition. Dry deposition events were identified in association with elevated atmospheric concentrations, corroborating recent studies that identified episodes of rapid pollution transport and deposition to the Arctic.
  •  
8.
  • Blichner, Sara M., 1989-, et al. (författare)
  • Process-evaluation of forest aerosol-cloud-climate feedback shows clear evidence from observations and large uncertainty in models
  • 2024
  • Ingår i: Nature Communications. - 2041-1723. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural aerosol feedbacks are expected to become more important in the future, as anthropogenic aerosol emissions decrease due to air quality policy. One such feedback is initiated by the increase in biogenic volatile organic compound (BVOC) emissions with higher temperatures, leading to higher secondary organic aerosol (SOA) production and a cooling of the surface via impacts on cloud radiative properties. Motivated by the considerable spread in feedback strength in Earth System Models (ESMs), we here use two long-term observational datasets from boreal and tropical forests, together with satellite data, for a process-based evaluation of the BVOC-aerosol-cloud feedback in four ESMs. The model evaluation shows that the weakest modelled feedback estimates can likely be excluded, but highlights compensating errors making it difficult to draw conclusions of the strongest estimates. Overall, the method of evaluating along process chains shows promise in pin-pointing sources of uncertainty and constraining modelled aerosol feedbacks.
  •  
9.
  • Cremer, Roxana, 1993-, et al. (författare)
  • Investigating the role of air mass history on the diversity of GCMestimates of atmospheric black carbon in the Arctic
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Black Carbon (BC) aerosols are known to play an important role in the Arctic, yet their exact contribution to thechanging of the Earth’s climate and Arctic amplification remains unclear. To reduce these uncertainties, the life cycle of BCneeds to be accurately described in general circulation models (GCMs). In this study, four GCMs (ECHAM6.3-HAM2.3,ECHAM6.3-HAM2.3-P3, ECHAM6.3-HAM2.3-SALSA2 and UKESM1.0) are compared in terms of their representation ofBC in the Arctic. A new Lagrangian framework is applied to investigate the history of airmasses reaching the Arctic observationalsite Zeppelin on Svalbard, and compared to the corresponding transport simulated by the GCMs, which are allnudged to reanalysis data from ERA-Interim. Aerosol processes along the trajectories are then compared between the models.ECHAM6.3-HAM2.3-P3 simulates the highest and UKESM1.0 the lowest BC loadings both globally and within the Arcticand ECHAM6.3-HAM2.3-SALSA2 is the GCM that reproduces the observations from Zeppelin station most faithfully. The BC concentration in the Arctic is largely controlled by the wet removal processes described in the models, but dry depositionalso plays a role in explaining some of the inter-model diversity. ECHAM6.3-HAM2.3-P3 is less efficient in wet removal thanthe other models, which is likely a result of an adjusted representation of ice processes compared with the other two ECHAMvariants. UKESM1.0 is the most efficient model in removing BC from the atmosphere, in large part due to more efficient dryremoval than with the ECHAM models. The Lagrangian analysis reveals that the BC concentrations at the Zeppelin station are largely determined by concentrations in airmasses older than the length of our back trajectories, i.e. ten days, highlighting theimportance of remote emissions to local BC concentrations in the Arctic. This further suggests a longer BC lifetime within theArctic as compared with the global average. Our results underline the importance of accurate descriptions of cloud and precipitation microphysics, along with realistic dry and wet scavenging schemes for improved descriptions of BC and its climateimpacts in the Arctic within GCMs.
  •  
10.
  • Ghan, Steven, et al. (författare)
  • Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability
  • 2016
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 113:21, s. 5804-5811
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy