SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parveen Nagma 1988) "

Sökning: WFRF:(Parveen Nagma 1988)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Norling, Karin, 1988, et al. (författare)
  • Gel Phase 1,2-Distearoyl-sn-glycero-3-phosphocholine-Based Liposomes Are Superior to Fluid Phase Liposomes at Augmenting Both Antigen Presentation on Major Histocompatibility Complex Class II and Costimulatory Molecule Display by Dendritic Cells in Vitro
  • 2019
  • Ingår i: ACS Infectious Diseases. - : American Chemical Society (ACS). - 2373-8227. ; 5:11, s. 1867-1878
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid-based nanoparticles have in recent years attracted increasing attention as pharmaceutical carriers. In particular, reports of them having inherent adjuvant properties combined with their ability to protect antigen from degradation make them suitable as vaccine vectors. However, the physicochemical profile of an ideal nanoparticle for vaccine delivery is still poorly defined. Here, we used an in vitro dendritic cell assay to assess the immunogenicity of a variety of liposome formulations as vaccine carriers and adjuvants. Using flow cytometry, we investigated liposome-assisted antigen presentation as well as the expression of relevant costimulatory molecules on the cell surface. Cytokine secretion was further evaluated with an enzyme-linked immunosorbent assay (ELISA). We show that liposomes can successfully enhance antigen presentation and maturation of dendritic cells, as compared to vaccine fusion protein (CTA1-3E alpha-DD) administered alone. In particular, the lipid phase state of the membrane was found to greatly influence the vaccine antigen processing by dendritic cells. As compared to their fluid phase counterparts, gel phase liposomes were more efficient at improving antigen presentation. They were also superior at upregulating the costimulatory molecules CD80 and CD86 as well as increasing the release of the cytokines IL-6 and IL-1 beta. Taken together, we demonstrate that gel phase liposomes, while nonimmunogenic on their own, significantly enhance the antigen-presenting ability of dendritic cells and appear to be a promising way forward to improve vaccine immunogenicity.
  •  
2.
  • Bernasconi, Valentina, 1989, et al. (författare)
  • A vaccine combination of lipid nanoparticles and a cholera toxin adjuvant derivative greatly improves lung protection against influenza virus infection
  • 2021
  • Ingår i: Mucosal Immunology. - : Elsevier BV. - 1933-0219 .- 1935-3456. ; 14:2, s. 523-536
  • Tidskriftsartikel (refereegranskat)abstract
    • This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4(+)T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4(+)T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.
  •  
3.
  • Norling, Karin, 1988, et al. (författare)
  • Dissimilar Deformation of Fluid- and Gel-Phase Liposomes upon Multivalent Interaction with Cell Membrane Mimics Revealed Using Dual-Wavelength Surface Plasmon Resonance
  • 2022
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 1520-5827 .- 0743-7463. ; 38:8, s. 2550-2560
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanical properties of biological nanoparticles play a crucial role in their interaction with the cellular membrane, in particular for cellular uptake. This has significant implications for the design of pharmaceutical carrier particles. In this context, liposomes have become increasingly popular, among other reasons due to their customizability and easily varied physicochemical properties. With currently available methods, it is, however, not trivial to characterize the mechanical properties of nanoscopic liposomes especially with respect to the level of deformation induced upon their ligand-receptor-mediated interaction with laterally fluid cellular membranes. Here, we utilize the sensitivity of dual-wavelength surface plasmon resonance to probe the size and shape of bound liposomes (∼100 nm in diameter) as a means to quantify receptor-induced deformation during their interaction with a supported cell membrane mimic. By comparing biotinylated liposomes in gel and fluid phases, we demonstrate that fluid-phase liposomes are more prone to deformation than their gel-phase counterparts upon binding to the cell membrane mimic and that, as expected, the degree of deformation depends on the number of ligand-receptor pairs that are engaged in the multivalent binding.
  •  
4.
  • Parveen, Nagma, 1988, et al. (författare)
  • Membrane Deformation Induces Clustering of Norovirus Bound to Glycosphingolipids in a Supported Cell-Membrane Mimic
  • 2018
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 9:9, s. 2278-2284
  • Tidskriftsartikel (refereegranskat)abstract
    • Quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy have been used to investigate binding of norovirus-like particles (noroVLPs) to a supported (phospho)lipid bilayer (SLB) containing a few percent of H or B type 1 glycosphingolipid (GSL) receptors. Although neither of these GSLs spontaneously form domains, noroVLPs were observed to form micron-sized clusters containing typically up to about 30 VLP copies, especially for B type 1, which is a higher-affinity receptor. This novel finding is explained by proposing a model implying that VLP-induced membrane deformation promotes VLP clustering, a hypothesis that was further supported by observing that functionalized gold nanoparticles were able to locally induce SLB deformation. Because similar effects are likely possible also at cellular membranes, our findings are interesting beyond a pure biophysicochemical perspective as they shed new light on what may happen during receptor-mediated uptake of viruses as well as nanocarriers in drug delivery. © Copyright 2018 American Chemical Society.
  •  
5.
  • Bally, Marta, 1981, et al. (författare)
  • Physicochemical tools for studying virus interactions with targeted cell membranes in a molecular and spatiotemporally resolved context
  • 2021
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer Science and Business Media LLC. - 1618-2642 .- 1618-2650. ; 413, s. 7157-7178
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.
  •  
6.
  • Morin Zetterberg, Malin, et al. (författare)
  • Optimization of lipodisk properties by modification of the extent and density of the PEG corona
  • 2016
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 1095-7103 .- 0021-9797. ; 484, s. 86-96
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipodisks are nanosized flat, circular, phospholipid bilayers that are edge-stabilized by polyethylene glycol-conjugated lipids (PEG-lipids). Over the last decade, lipodisks stabilized with PEG of molecular weight 2000 or 5000 have been shown to hold high potential as both biomimetic membranes and drug carriers. In this study we investigate the possibilities to optimize the properties of the lipodisks, and widen their applicability, by reducing the PEG molecular weight and/or the density of the PEG corona. Results obtained by cryo-transmission electron microscopy and dynamic light scattering show that stable, well-defined lipodisks can be produced from mixtures of distearoylphosphatidylcholine (DSPC) and distearoylphosphatidylethanolamine conjugated to PEG of molecular weight 1000 (DSPE-PEG(1000)). Preparations based on the use of DSPE-PEG(750) tend, in contrast, to be polydisperse in size and structure. By comparing immobilization of lipodisks stabilized with DSPE-PEG(1000), DSPE-PEG(2000), and DSPE-PEG(5000) to porous and smooth silica surfaces, we show that the amount of surface bound disks can be considerably improved by the use of PEG-lipids with reduced molecular weight. Further, a modified preparation protocol that enables production of lipodisks with very low PEG-lipid content is described. The reduced PEG density, which facilitates the incorporation of externally added ligand-linked PEG-lipids, is shown to be beneficial for the production of targeting lipodisks.
  •  
7.
  • Parveen, Nagma, 1988, et al. (författare)
  • Competition for Membrane Receptors: Norovirus Detachment via Lectin Attachment
  • 2019
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 141:41, s. 16303-16311
  • Tidskriftsartikel (refereegranskat)abstract
    • Virus internalization into the host cells occurs via multivalent interactions, in which a single virus binds to multiple receptors in parallel. Because of analytical and experimental limitations this complex type of interaction is still poorly understood and quantified. Herein, the multivalent interaction of norovirus-like particles (noroVLPs) with H or B type 1 glycosphingolipids (GSLs), embedded in a supported phospholipid bilayer, is investigated by following the competition between noroVLPs and a lectin (from Ralstonia solanacearum) upon binding to these GSLs. Changes in noroVLP and lectin coverage, caused by competition, were monitored for both GSLs and at different GSL concentrations using quartz crystal microbalance with dissipation monitoring. The study yields information about the minimum GSL concentration needed for (i) noroVLPs to achieve firm attachment to the bilayer prior to competition and to (ii) remain firmly attached to the bilayer during competition. We show that these two concentrations are almost identical for the H type 1-noroVLP interaction but differ for B type 1, indicating an accumulation of B type 1 GSLs in the noroVLP-bilayer interaction area. Furthermore, the GSL concentration required for firm attachment is significantly larger for H type 1 than for B type 1, indicating a higher affinity of noroVLP toward B type 1. This finding is supported by extracting the energy of single noroVLP-H type 1 and noroVLP-B type 1 bonds from the competition kinetics, which were estimated to be 5 and 6 kcal/mol, respectively. This demonstrates the potential of utilizing competitive binding kinetics to analyze multivalent interactions, which has remained difficult to quantify using conventional approaches.
  •  
8.
  • Parveen, Nagma, 1988, et al. (författare)
  • Detachment of Membrane Bound Virions by Competitive Ligand Binding Induced Receptor Depletion
  • 2017
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 33:16, s. 4049-4056
  • Tidskriftsartikel (refereegranskat)abstract
    • Multivalent receptor-mediated interactions between virions and a lipid membrane can be weakened using competitive nonpathogenic ligand binding. In particular, the subsequent binding of such ligands can induce detachment of bound virions, a phenomenon of crucial relevance for the development of new antiviral drugs. Focusing on the simian virus 40 (SV40) and recombinant cholera toxin B subunit (rCTB), and using (monosialcftetrahexosyl)ganglioside (GM1) as their common receptor in a supported lipid bilayer (SLB), we present the first detailed investigation of this phenomenon by employing the quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy assisted 2D single particle tracking (SPT) techniques. Analysis of the QCM-D-measured release kinetics made it possible to determine the binding strength of a single SV40-GM1 pair. The release dynamics of SV40, monitored by SPT, revealed that a notable fraction of SV40 becomes mobile just before the release, allowing to estimate the distribution of SV40-bound GM1 receptors just prior to release.
  •  
9.
  • Parveen, Nagma, 1988, et al. (författare)
  • Quantifying and controlling the cation uptake upon hydrated ionic liquid-induced swelling of polyelectrolyte multilayers
  • 2017
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 13:10, s. 1988-1997
  • Tidskriftsartikel (refereegranskat)abstract
    • Controlling the uptake of specific ions in polyelectrolyte multilayers is of interest for various fields of application. Here, we quantify the amount of cation of an ionic liquid, namely 1,3-bis(cyanomethyl) imidazolium chloride, incorporated into polyelectrolyte multilayers upon contact with an ionic liquid solution. The ion partition equilibrium is determined depending on concentration in solution, employing attenuated total reflection infrared spectroscopy. Generating an excess charge in multilayers by post-preparative manipulation of their charge balance, one can control the incorporated amount. Three multilayer systems are assembled for this purpose, i.e., PSS/PDADMAC, PSS/PAH and PAA/PDADMAC, employing poly(styrene sulfonate) (PSS), poly(diallyldimethylammonium chloride) (PDADMAC), poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA). The charge balance of the latter two films is manipulated by an external pH stimulus generating an excess positive or negative internal charge, respectively. The concentration of cations in PEM amounts to 30% to 100% of the bulk concentration and scales as PAA/PDADMAC > PSS/PDADMAC > PSS/PAH. Thus, post-preparative pH treatment may be a future tool to create ion-conductive polymer gel films with a desired concentration of small cations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy