SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Parviainen T) "

Sökning: WFRF:(Parviainen T)

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kawauchi, K., et al. (författare)
  • Validation and atmospheric exploration of the sub-Neptune TOI-2136b around a nearby M3 dwarf
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The NASA space telescope TESS is currently in the extended mission of its all-sky search for new transiting planets. Of the thousands of candidates that TESS is expected to deliver, transiting planets orbiting nearby M dwarfs are particularly interesting targets since they provide a great opportunity to characterize their atmospheres by transmission spectroscopy. Aims. We aim to validate and characterize the new sub-Neptune-sized planet candidate TOI-2136.01 orbiting a nearby M dwarf (d = 33.36 +/- 0.02 pc, T-eff = 3373 +/- 108 K) with an orbital period of 7.852 days. Methods. We use TESS data, ground-based multicolor photometry, and radial velocity measurements with the InfraRed Doppler (IRD) instrument on the Subaru Telescope to validate the planetary nature of TOI-2136.01, and estimate the stellar and planetary parameters. We also conduct high-resolution transmission spectroscopy to search for helium in its atmosphere. Results. We confirm that TOI-2136.01 (now named TOI-2136b) is a bona fide planet with a planetary radius of R-p = 2.20 +/- 0.07 R-circle plus and a mass of M-p = 4.7(-2.6)(+3.1) M-circle plus. We also search for helium 10830 angstrom absorption lines and place an upper limit on the equivalent width of <7.8 m angstrom and on the absorption signal of <1.44% with 95% confidence. Conclusions. TOI-2136b is a sub-Neptune transiting a nearby and bright star (J = 10.8 mag), and is a potentially hycean planet, which is a new class of habitable planets with large oceans under a H-2-rich atmosphere, making it an excellent target for atmospheric studies to understand the formation, evolution, and habitability of the small planets.
  •  
2.
  • Luque, R., et al. (författare)
  • A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 623:7989, s. 932-937
  • Tidskriftsartikel (refereegranskat)abstract
    • Planets with radii between that of the Earth and Neptune (hereafter referred to as ‘sub-Neptunes’) are found in close-in orbits around more than half of all Sun-like stars 1,2. However, their composition, formation and evolution remain poorly understood 3. The study of multiplanetary systems offers an opportunity to investigate the outcomes of planet formation and evolution while controlling for initial conditions and environment. Those in resonance (with their orbital periods related by a ratio of small integers) are particularly valuable because they imply a system architecture practically unchanged since its birth. Here we present the observations of six transiting planets around the bright nearby star HD 110067. We find that the planets follow a chain of resonant orbits. A dynamical study of the innermost planet triplet allowed the prediction and later confirmation of the orbits of the rest of the planets in the system. The six planets are found to be sub-Neptunes with radii ranging from 1.94R ⊕ to 2.85R ⊕. Three of the planets have measured masses, yielding low bulk densities that suggest the presence of large hydrogen-dominated atmospheres.
  •  
3.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
4.
  • Gandolfi, D., et al. (författare)
  • Kepler-423b: a half-Jupiter mass planet transiting a very old solar-like star
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 576
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1 17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned light curve of Kepler-423 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of similar to 4.3% and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star Kepler-423 is a G4 dwarf with M-* = 0.85 +/- 0.04 M-circle dot, R-* = 0.95 +/- 0.04 R-circle dot, T-eff = 5560 +/- 80 K, [M/H] = -0.10 +/- 0.05 dex, and with an age of 11 +/- 2 Gyr. The planet Kepler-423b has a mass of M-p = 0.595 +/- 0.081 M-Jup and a radius of R-p = 1.192 +/- 0.052 R-Jup, yielding a planetary bulk density of rho(p) = 0.459 +/- 0.083 g cm(-3). The radius of Kepler-423b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2 sigma confidence level (Delta F-ec = 14.2 +/- 6.6 ppm) and found that the orbit might have a small non-zero eccentricity of 0.019(-0.014)(+0.028) . With a Bond albedo of A(B) = 0.037 +/- 0.019, Kepler-423b is one of the gas-giant planets with the lowest albedo known so far.
  •  
5.
  • Cabrera, J., et al. (författare)
  • Transiting exoplanets from the CoRoT space mission: XXVII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet showing an asymmetric transit
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 579
  • Tidskriftsartikel (refereegranskat)abstract
    • © ESO, 2015. Context. We present the discovery of two transiting extrasolar planets by the satellite CoRoT. Aims. We aim at a characterization of the planetary bulk parameters, which allow us to further investigate the formation and evolution of the planetary systems and the main properties of the host stars. Methods. We used the transit light curve to characterize the planetary parameters relative to the stellar parameters. The analysis of HARPS spectra established the planetary nature of the detections, providing their masses. Further photometric and spectroscopic ground-based observations provided stellar parameters (log g, Teff, vsini) to characterize the host stars. Our model takes the geometry of the transit to constrain the stellar density into account, which when linked to stellar evolutionary models, determines the bulk parameters of the star. Because of the asymmetric shape of the light curve of one of the planets, we had to include the possibility in our model that the stellar surface was not strictly spherical. Results. We present the planetary parameters of CoRoT-28b, a Jupiter-sized planet (mass 0.484 ± 0.087 MJup; radius 0.955 ± 0.066 RJup) orbiting an evolved star with an orbital period of 5.208 51 ± 0.000 38 days, and CoRoT-29b, another Jupiter-sized planet (mass 0.85 ± 0.20 MJup; radius 0.90 ± 0.16 RJup) orbiting an oblate star with an orbital period of 2.850 570 ± 0.000 006 days. The reason behind the asymmetry of the transit shape is not understood at this point. Conclusions. These two new planetary systems have very interesting properties and deserve further study, particularly in the case of the star CoRoT-29.
  •  
6.
  • Deline, A., et al. (författare)
  • The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 659
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These 'ultra-hot Jupiters' have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet's atmospheric properties. Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere. Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics. Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, R-p = 1.600(-0.016)(+0.017)R(J), with a precision of 1%, and the true orbital obliquity of the planetary system, Psi(P) = 89.6 +/- 1.2 deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of delta ecl = 96.5(-5.9)(+4).(5) ppm, from which we derive an upper limit on the geometric albedo: A(g) < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope. Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to similar to 165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J(2) (oblateness).
  •  
7.
  • Hori, Yasunori, et al. (författare)
  • The Discovery and Follow-up of Four Transiting Short-period Sub-Neptunes Orbiting M Dwarfs
  • 2024
  • Ingår i: Astronomical Journal. - 1538-3881 .- 0004-6256. ; 167:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sub-Neptunes with radii of 2-3 R ⊕ are intermediate in size between rocky planets and Neptune-sized planets. The orbital properties and bulk compositions of transiting sub-Neptunes provide clues to the formation and evolution of close-in small planets. In this paper, we present the discovery and follow-up of four sub-Neptunes orbiting M dwarfs (TOI-782, TOI-1448, TOI-2120, and TOI-2406), three of which were newly validated by ground-based follow-up observations and statistical analyses. TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b have radii of R p = 2.740 − 0.079 + 0.082 R ⊕ , 2.769 − 0.068 + 0.073 R ⊕ , 2.120 ± 0.067 R ⊕, and 2.830 − 0.066 + 0.068 R ⊕ and orbital periods of P = 8.02, 8.11, 5.80, and 3.08 days, respectively. Doppler monitoring with the Subaru/InfraRed Doppler instrument led to 2σ upper limits on the masses of <19.1 M ⊕, <19.5 M ⊕, <6.8 M ⊕, and <15.6 M ⊕ for TOI-782 b, TOI-1448 b, TOI-2120 b, and TOI-2406 b, respectively. The mass-radius relationship of these four sub-Neptunes testifies to the existence of volatile material in their interiors. These four sub-Neptunes, which are located above the so-called “radius valley,” are likely to retain a significant atmosphere and/or an icy mantle on the core, such as a water world. We find that at least three of the four sub-Neptunes (TOI-782 b, TOI-2120 b, and TOI-2406 b), orbiting M dwarfs older than 1 Gyr, are likely to have eccentricities of e ∼ 0.2-0.3. The fact that tidal circularization of their orbits is not achieved over 1 Gyr suggests inefficient tidal dissipation in their interiors.
  •  
8.
  • Luque, R., et al. (författare)
  • Precise mass determination for the keystone sub-Neptune planet transiting the mid-type M dwarf G 9-40
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite being a prominent subset of the exoplanet population discovered in the past three decades, the nature and provenance of sub-Neptune-sized planets is still one of the open questions in exoplanet science. Aims. For planets orbiting bright stars, precisely measuring the orbital and planet parameters of the system is the best approach to distinguish between competing theories regarding their formation and evolution. Methods. We obtained 69 new radial velocity observations of the mid-M dwarf G 9-40 with the CARMENES instrument to measure for the first time the mass of its transiting sub-Neptune planet, G 9-40 b, discovered in data from the K2 mission. Results. Combined with new observations from the TESS mission during Sectors 44, 45, and 46, we are able to measure the radius of the planet to an uncertainty of 3.4% (R-b = 1.900 +/- 0.065 R-circle plus) and determine its mass with a precision of 16% (M-b = 4.00 +/- 0.63 M-circle plus). The resulting bulk density of the planet is inconsistent with a terrestrial composition and suggests the presence of either a water-rich core or a significant hydrogen-rich envelope. Conclusions. G 9-40 b is referred to as a keystone planet due to its location in period-radius space within the radius valley. Several theories offer explanations for the origin and properties of this population and this planet is a valuable target for testing the dependence of those models on stellar host mass. By virtue of its brightness and small size of the host, it joins L 98-59 d as one of the two best warm (T-eq similar to 400 K) sub-Neptunes for atmospheric characterization with JWST, which will probe cloud formation in sub-Neptune-sized planets and break the degeneracies of internal composition models.
  •  
9.
  • Micai, M, et al. (författare)
  • Autistic Adult Health and Professional Perceptions of It: Evidence From the ASDEU Project
  • 2021
  • Ingår i: Frontiers in psychiatry. - : Frontiers Media SA. - 1664-0640. ; 12, s. 614102-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Autism Spectrum Disorders in the European Union (ASDEU) survey investigated the knowledge and health service experiences of users and providers to generate new hypotheses and scientific investigations that would contribute to improvement in health care for autistic adults. An online survey designed for autistic adults, carers of autistic adults, and professionals in adult services was translated into 11 languages and distributed electronically by organizations and in-country adult service facilities in 2017; 522 autistic adults, 442 carers, and 113 professionals provided answers to the health questions. Professionals, the majority in non-medical services, appeared to be poorly informed about whether certain co-occurring conditions were more frequent in autistic adults than typical adults—especially some medical conditions, suicide attempts, accidents, and pain. A minority of autistic adults reported preventive health behaviors such as routine health check-ups. The majority of users and providers expressed the desire to make health care services more user-friendly for autistic adults. Among the three groups, &lt;20% of responders knew an organization or clinician which has developed a way to monitor health, and prevent poor health, that works well for adults on the autism spectrum. The results point to means for better management of co-occurring conditions associated with autism in adulthood in order to reduce hospital admissions and potential areas of improvement in health and social services for autistic adults. Specifically, efforts should be focused on (1) professionals' education on risks for co-occurring conditions in autistic adults; (2) promoting preventive health behaviors; (3) making services user-friendly for autistic adults and their families; and (4) encouraging knowledge of good local services.
  •  
10.
  • Micai, M, et al. (författare)
  • Autistic Adult Services Availability, Preferences, and User Experiences: Results From the Autism Spectrum Disorder in the European Union Survey
  • 2022
  • Ingår i: Frontiers in psychiatry. - : Frontiers Media SA. - 1664-0640. ; 13, s. 919234-
  • Tidskriftsartikel (refereegranskat)abstract
    • There is very little knowledge regarding autistic adult services, practices, and delivery. The study objective was to improve understanding of current services and practices for autistic adults and opportunities for improvement as part of the Autism Spectrum Disorder in the European Union (ASDEU) project. Separate survey versions were created for autistic adults, carers of autistic adults, and professionals in adult services. 2,009 persons responded to the survey and 1,085 (54%) of them completed at least one of the services sections: 469 autistic adults (65% female; 55% &lt;35 years old), 441 carers of autistic adults (27% female; 6% &lt;35 years old), 175 professionals in adult services (76% female; 67% in non-medical services). Top choices by autistic adults, carers or professionals for services best suiting their current needs were: residential services: “help in own home” (adults, carers of high independent adults, professionals), “fulltime residential facility” (carers of low independent adults); employment services: “job mentors” (adults, carers of high independent adults, professionals), “Sheltered employment” (carers of low independent adults); education services: “support in regular education setting” (all groups); financial services: financial support in lieu of employment (“Supplementary income for persons unable to have full employment” for adults, “full pension” for carers of low independent adults) or to supplement employment earnings for carers of high independent adults and professionals; social services: “behavior training” (adults) and “life skills training” (carers and professionals). Waiting times for specific services were generally &lt; 1 month or 1–3 months, except for residential services which could be up to 6 months; most professionals were uninformed of waiting times (&gt;50% responded “don’t know”). Five of seven residential services features recommended for autistic adults were experienced by &lt;50% of adults. The knowledge of good local services models that work well for autistic adults was generally low across all services areas. The variation in services experiences and perceptions reported by autistic adults, carers, or professionals underscore the need to query all groups for a complete picture of community services availability and needs. The results showed areas for potential improvement in autistic adult services delivery in the EU to achieve recommended standards.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy