SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paslawski Wojciech) "

Sökning: WFRF:(Paslawski Wojciech)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Paslawski, Wojciech, et al. (författare)
  • alpha-synuclein-lipoprotein interactions and elevated ApoE level in cerebrospinal fluid from Parkinson's disease patients
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 116:30, s. 15226-15235
  • Tidskriftsartikel (refereegranskat)abstract
    • The progressive accumulation, aggregation, and spread of alpha-synuclein (alpha SN) are common hallmarks of Parkinson's disease (PD) pathology. Moreover, numerous proteins interact with alpha SN species, influencing its toxicity in the brain. In the present study, we extended analyses of alpha SN-interacting proteins to cerebrospinal fluid (CSF). Using coimmunoprecipitation, followed by mass spectrometry, we found that alpha SN colocalize with apolipoproteins on lipoprotein vesicles. We confirmed these interactions using several methods, including the enrichment of lipoproteins with a recombinant alpha SN, and the subsequent uptake of prepared vesicles by human dopaminergic neuronal-like cells. Further, we report an increased level of ApoE in CSF from early PD patients compared with matched controls in 3 independent cohorts. Moreover, in contrast to controls, we observed the presence of ApoE-positive neuromelanin-containing dopaminergic neurons in substantia nigra of PD patients. In conclusion, the cooccurrence of alpha SN on lipoprotein vesicles, and their uptake by dopaminergic neurons along with an increase of ApoE in early PD, proposes a mechanism(s) for alpha SN spreading in the extracellular milieu of PD.
  •  
3.
  • Toskas, Konstantinos, et al. (författare)
  • PRC2-mediated repression is essential to maintain identity and function of differentiated dopaminergic and serotonergic neurons
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:34
  • Tidskriftsartikel (refereegranskat)abstract
    • How neurons can maintain cellular identity over an entire life span remains largely unknown. Here, we show that maintenance of identity in differentiated dopaminergic and serotonergic neurons is critically reliant on the Polycomb repressive complex 2 (PRC2). Deletion of the obligate PRC2 component, Eed, in these neurons resulted in global loss of H3K27me3, followed by a gradual activation of genes harboring both H3K27me3 and H3K9me3 modifications. Notably, H3K9me3 was lost at these PRC2 targets before gene activation. Neuronal survival was not compromised; instead, there was a reduction in subtype-specific gene expression and a progressive impairment of dopaminergic and serotonergic neuronal function, leading to behavioral deficits characteristic of Parkinson's disease and anxiety. Single-cell analysis revealed subtype-specific vulnerability to loss of PRC2 repression in dopamine neurons of the substantia nigra. Our study reveals that a PRC2-dependent nonpermissive chromatin state is essential to maintain the subtype identity and function of dopaminergic and serotonergic neurons.
  •  
4.
  • Uzuegbunam, Bright C., et al. (författare)
  • In Silico and In Vitro Study towards the Rational Design of 4,4′-Disarylbisthiazoles as a Selective α-Synucleinopathy Biomarker
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:22
  • Tidskriftsartikel (refereegranskat)abstract
    • The alpha-synucleinopathies are a group of neurodegenerative diseases characterized by the deposition of alpha-synuclein aggregates (alpha-syn) in the brain. Currently, there is no suitable tracer to enable a definitive early diagnosis of these diseases. We reported candidates based on 4,4 '-disarylbisthiazole (DABTA) scaffold with a high affinity towards alpha-syn and excellent selectivity over A beta and tau fibrils. Based on prior in silico studies, a focused library of 23 halogen-containing and O-methylated DABTAs was prepared. The DABTAs were synthesized via a modified two-step Hantzsch thiazole synthesis, characterized, and used in competitive binding assays against [H-3]PiB and [H-3]DCVJ. The DABTAs were obtained with an overall chemical yield of 15-71%, and showed a calculated lipophilicity of 2.5-5.7. The ligands demonstrated an excellent affinity to alpha-syn with both [H-3]PiB and [H-3]DCVJ: K-i 0.1-4.9 nM and up to 20-3900-fold selectivity over A beta and tau fibrils. It could be concluded that in silico simulation is useful for the rational design of a new generation of DABTAs. Further investigation of the leads in the next step is encouraged: radiolabeling of the ligands with radioisotopes such as fluorine-18 or carbon-11 for in vivo, ex vivo, and translational research and for further in vitro experiments on human-derived protein aggregates.
  •  
5.
  • Uzuegbunam, Bright C., et al. (författare)
  • Toward Novel [18F]Fluorine-Labeled Radiotracers for the Imaging of α-Synuclein Fibrils
  • 2022
  • Ingår i: Frontiers in Aging Neuroscience. - : Frontiers Media S.A.. - 1663-4365. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of α-synuclein aggregates (α-syn) in the human brain is an occurrence common to all α-synucleinopathies. Non-invasive detection of these aggregates in a living brain with a target-specific radiotracer is not yet possible. We have recently discovered that the inclusion of a methylenedioxy group in the structure of diarylbisthiazole (DABTA)-based tracers improves binding affinity and selectivity to α-syn. Subsequently, complementary in silico modeling and machine learning (ML) of tracer–protein interactions were employed to predict surface sites and structure–property relations for the binding of the ligands. Based on this observation, we developed a small focused library of DABTAs from which 4-(benzo[d][1,3]dioxol-5-yl)-4′-(3-[18F]fluoro-4-methoxyphenyl)-2,2′-bithiazole [18F]d2, 6-(4′-(3-[18F]fluoro-4-methoxyphenyl)-[2,2′-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [18F]d4, 4-(benzo [d][1,3]dioxol-5-yl)-4′-(6-[18F]fluoropyridin-3-yl)-2,2′-bithiazole [18F]d6, and 6-(4′-(6-[18F]fluoropyridin-3-yl)-[2,2′-bithiazol]-4-yl)-[1,3]dioxolo[4,5-b]pyridine [18F]d8 were selected based on their high binding affinity to α-syn and were further evaluated. Binding assay experiments carried out with the non-radioactive versions of the above tracers d2, d4, d6, and d8 showed high binding affinity of the ligands to α-syn: 1.22, 0.66, 1.21, and 0.10 nM, respectively, as well as excellent selectivity over β-amyloid plaques (Aβ) and microtubular tau aggregates (>200-fold selectivity). To obtain the tracers, their precursors were radiolabeled either via an innovative ruthenium-mediated (SNAr) reaction ([18F]d2 and [18F]d4) or typical SNAr reaction ([18F]d6 and [18F]d8) with moderate-to-high radiochemical yields (13% – 40%), and high molar activity > 60 GBq/μmol. Biodistribution experiments carried out with the tracers in healthy mice revealed that [18F]d2 and [18F]d4 showed suboptimal brain pharmacokinetics: 1.58 and 4.63 %ID/g at 5 min post-injection (p.i.), and 1.93 and 3.86 %ID/g at 60 min p.i., respectively. However, [18F]d6 and [18F]d8 showed improved brain pharmacokinetics: 5.79 and 5.13 %ID/g at 5 min p.i.; 1.75 and 1.07 %ID/g at 60 min p.i.; and 1.04 and 0.58 %ID/g at 120 min p.i., respectively. The brain uptake kinetics of [18F]d6 and [18F]d8 were confirmed in a dynamic PET study. Both tracers also showed no brain radiometabolites at 20 min p.i. in initial in vivo stability experiments carried out in healthy mice. [18F]d8 seems very promising based on its binding properties and in vivo stability, thus encouraging further validation of its usefulness as a radiotracer for the in vivo visualization of α-syn in preclinical and clinical settings. Additionally, in silico and ML-predicted values correlated with the experimental binding affinity of the ligands.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy