SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pastorello Andrea) "

Sökning: WFRF:(Pastorello Andrea)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fiore, Achille, et al. (författare)
  • Detailed spectrophotometric analysis of the superluminous and fast evolving SN 2019neq
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 527:3, s. 6473-6494
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2019neq was a very fast evolving superluminous supernova. At a redshift z = 0.1059, its peak absolute magnitude was −21.5 ± 0.2 mag in g band. In this work, we present data and analysis from an extensive spectrophotometric follow-up campaign using multiple observational facilities. Thanks to a nebular spectrum of SN 2019neq, we investigated some of the properties of the host galaxy at the location of SN 2019neq and found that its metallicity and specific star formation rate are in a good agreement with those usually measured for SLSNe-I hosts. We then discuss the plausibility of the magnetar and the circumstellar interaction scenarios to explain the observed light curves, and interpret a nebular spectrum of SN 2019neq using published SUMO radiative-transfer models. The results of our analysis suggest that the spin-down radiation of a millisecond magnetar with a magnetic field B ≃ 6×1014 G could boost the luminosity of SN 2019neq.
  •  
2.
  • Kuncarayakti, Hanindyo, et al. (författare)
  • SN 2017dio : A Type-Ic Supernova Exploding in a Hydrogen-rich Circumstellar Medium
  • 2018
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 854:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2017dio shows both spectral characteristics of a type-Ic supernova (SN) and signs of a hydrogen-rich circumstellar medium (CSM). Prominent, narrow emission lines of H and He are superposed on the continuum. Subsequent evolution revealed that the SN ejecta are interacting with the CSM. The initial SN Ic identification was confirmed by removing the CSM interaction component from the spectrum and comparing with known SNe Ic and, reversely, adding a CSM interaction component to the spectra of known SNe Ic and comparing them to SN 2017dio. Excellent agreement was obtained with both procedures, reinforcing the SN Ic classification. The light curve constrains the pre-interaction SN Ic peak absolute magnitude to be around M-g = -17.6 mag. No evidence of significant extinction is found, ruling out a brighter luminosity required by an SN Ia classification. These pieces of evidence support the view that SN 2017dio is an SN Ic, and therefore the first firm case of an SN Ic with signatures of hydrogen-rich CSM in the early spectrum. The CSM is unlikely to have been shaped by steady-state stellar winds. The mass loss of the progenitor star must have been intense, M similar to 0.02 (epsilon(H alpha)/0.01)(-1) (nu(wind)/500 km s(-1)) (nu(shock)/10,000 km s(-1))M--3(circle dot) yr(-1), peaking at a few decades before the SN. Such a high mass-loss rate might have been experienced by the progenitor through eruptions or binary stripping.
  •  
3.
  • Li, Wenxiong, et al. (författare)
  • Observations of Type Ia Supernova 2014J for Nearly 900 Days and Constraints on Its Progenitor System
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 882:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present extensive ground-based and Hubble Space Telescope (HST) photometry of the highly reddened, very nearby SN Ia 2014J in M82, covering the phases from 9 days before to about 900 days after the B-band maximum. SN 2014J is similar to other normal SNe Ia near the maximum light, but it shows flux excess in the B band in the early nebular phase. This excess flux emission can be due to light scattering by some structures of circum stellar materials located at a few 10(17) cm, consistent with a single-degenerate progenitor system or a double-degenerate progenitor system with mass outflows in the final evolution or magnetically driven winds around the binary system. At t similar to +300 to similar to +500 days past the B-band maximum, the light curve of SN 2014J shows a faster decline relative to the Ni-56 decay. That feature can be attributed to the significant weakening of the emission features around [Fe III] lambda 4700 and [Fe II] lambda 5200 rather than the positron escape, as previously suggested. Analysis of the HST images taken at t > 600 days confirms that the luminosity of SN 2014J maintains a flat evolution at the very late phase. Fitting the late-time pseudobolometric light curve with radioactive decay of Ni-56, Ni-57, and Fe-55 isotopes, we obtain the mass ratio Ni-57/Ni-56 as 0.035 +/- 0.011, which is consistent with the corresponding value predicted from the 2D and 3D delayed-detonation models. Combined with early-time analysis, we propose that delayed detonation through the single-degenerate scenario is most likely favored for SN 2014J.
  •  
4.
  • Tomasella, Lina, et al. (författare)
  • Observations of the low-luminosity Type Iax supernova 2019gsc : a fainter clone of SN 2008ha?
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 496:2, s. 1132-1143
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical photometric and spectroscopic observations of the faint-and-fast evolving Type Iax supernova (SN) 2019gsc, extending from the time of g-band maximum until about 50 d post-maximum, when the object faded to an apparent r-band magnitude m(r )= 22.48 +/- 0.11 mag. SN 2019gsc reached a peak luminosity of only M-g = -13.58 +/- 0.15 mag, and is characterized with a post-maximum decline rate Delta m(15)(g) = 1.08 +/- 0.14 mag. These light curve parameters are comparable to those measured for SN 2008ha of M-g = -13.89 +/- 0.14 mag at peak and Delta m(15)(g) =1.80 +/- 0.03 mag. The spectral features of SN 2019gsc also resemble those of SN 2008ha at similar phases. This includes both the extremely low ejecta velocity at maximum, similar to 3000 km s(-1) and at late-time (phase +54 d) strong forbidden iron and cobalt lines as well as both forbidden and permitted calcium features. Furthermore, akin to SN 2008ha, the bolometric light curve of SN 2019gsc is consistent with the production of approximate to 0.003 +/- 0.001 M-circle dot of Ni-56. The explosion parameters, M-ej approximate to 0.13 M-circle dot and E-k approximate to 12 x 10(48) erg, are also similar to those inferred for SN 2008ha. We estimate a subsolar oxygen abundance for the host galaxy of SN 2019gsc (12 + log(10)(O/H) =8.10 +/- 0.18 dex), consistent with the equally metal-poor environment of SN 2008ha. Altogether, our data set for SN 2019gsc indicates that this is a member of a small but growing group of extreme SN Iax that includes SN 2008ha and SN 2010ae.
  •  
5.
  • Zhang, Tianmeng, et al. (författare)
  • Observations of a Fast-expanding and UV-bright Type Ia Supernova SN 2013gs
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 872:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we present extensive optical and ultraviolet (UV) observations of the type Ia supernova (SN Ia) 2013gs discovered during the Tsinghua-NAOC Transient Survey. The photometric observations in the optical show that the light curves of SN 2013gs are similar to those of normal SNe Ia, with an absolute peak magnitude of M-B = -19.25 +/- 0.15 mag and a post-maximum decline rate Delta m(15)(B) = 1.00 +/- 0.05 mag. Gehrels Swift Ultr-Violet/Optical Telescope observations indicate that SN 2013gs shows unusually strong UV emission (especially in the uvw1 band) at around the maximum light (M-uvw1 similar to -18.9 mag). The SN is characterized by relatively weak Fe II III absorptions at similar to 5000 angstrom in the early spectra and a larger expansion velocity (v(Si) similar to 13,000 km s(-1) around the maximum light) than the normal-velocity SNe Ia. We discuss the relation between the uvw1 - v color and some observables, including Si II velocity, line strength of Si II lambda 6355 and Fe II/III lines, and Delta m(15)(B). Compared to other fast-expanding SNe Ia, SN 2013gs exhibits Si and Fe absorption lines with similar strength and bluer uvw1 - v color. We briefly discussed the origin of the observed UV dispersion of SNe Ia.
  •  
6.
  • Bose, Subhash, et al. (författare)
  • ASASSN-15nx : A Luminous Type II Supernova with a Perfect Linear Decline
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 862:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a luminous Type II supernova, ASASSN-15nx, with a peak luminosity of M-v = -20 mag that is between those of typical core-collapse supernovae and super-luminous supernovae. The post-peak optical light curves show a long, linear decline with a steep slope of 2.5 mag (100 day)(-1) (i.e., an exponential decline in flux) through the end of observations at phase approximate to 260 day. In contrast, the light curves of hydrogen-rich supernovae (SNe II-P/L) always show breaks in their light curves at phase similar to 100 day, before settling onto Co-56 radioactive decay tails with a decline rate of about 1 mag (100 day)(-1). The spectra of ASASSN-15nx do not exhibit the narrow emission-line features characteristic of Type IIn SNe, which can have a wide variety of light-curve shapes usually attributed to strong interactions with a dense circumstellar medium (CSM). ASASSN-15nx has a number of spectroscopic peculiarities, including a relatively weak and triangular-shaped H alpha emission profile with no absorption component. The physical origin of these peculiarities is unclear, but the long and linear post-peak light curve without a break suggests a single dominant powering mechanism. Decay of a large amount of Ni-56 (M-Ni = 1.6 +/- 0.2 M-circle dot) can power the light curve of ASASSN-15nx, and the steep light-curve slope requires substantial gamma-ray escape from the ejecta, which is possible given a low-mass hydrogen envelope for the progenitor. Another possibility is strong CSM interactions powering the light curve, but the CSM needs to be sculpted to produce the unique light-curve shape and avoid producing SN IIn-like narrow emission lines.
  •  
7.
  • Bose, Subhash, et al. (författare)
  • ASASSN-18am/SN 2018gk : an overluminous Type IIb supernova from a massive progenitor
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 503:3, s. 3472-3491
  • Tidskriftsartikel (refereegranskat)abstract
    • ASASSN-18am/SN 2018gk is a newly discovered member of the rare group of luminous, hydrogen-rich supernovae (SNe) with a peak absolute magnitude of M-V approximate to -20 mag that is in between normal core-collapse SNe and superluminous SNe. These SNe show no prominent spectroscopic signatures of ejecta interacting with circumstellar material (CSM), and their powering mechanism is debated. ASASSN-18am declines extremely rapidly for a Type II SN, with a photospheric-phase decline rate of similar to 6.0 mag (100 d)(-1). Owing to the weakening of H I and the appearance of He I in its later phases, ASASSN-18am is spectroscopically a Type IIb SN with a partially stripped envelope. However, its photometric and spectroscopic evolution shows significant differences from typical SNe IIb. Using a radiative diffusion model, we find that the light curve requires a high synthesized Ni-56 mass M-Ni similar to 0.4 M-circle dot and ejecta with high kinetic energy E-kin = (7-10) x 10(51) erg. Introducing a magnetar central engine still requires M-Ni similar to 0.3 M-circle dot and E-kin = 3 x 10(51) erg. The high Ni-56 mass is consistent with strong iron-group nebular lines in its spectra, which are also similar to several SNe Ic-BL with high Ni-56 yields. The earliest spectrum shows 'flash ionization' features, from which we estimate a mass-loss rate of (M) over dot approximate to 2 x 10(-4 )M(circle dot) yr(-1). This wind density is too low to power the luminous light curve by ejecta-CSM interaction. We measure expansion velocities as high as 17 000 km s(-1) for H alpha, which is remarkably high compared to other SNe II. We estimate an oxygen core mass of 1.8-3.4 M-circle dot using the [O I] luminosity measured from a nebular-phase spectrum, implying a progenitor with a zero-age main-sequence mass of 19-26 M-circle dot.
  •  
8.
  • Ergon, Mattias, 1967-, et al. (författare)
  • Light curve and spectral modelling of the type IIb SN 2020acat. Evidence for a strong Ni bubble effect on the diffusion time
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 683
  • Tidskriftsartikel (refereegranskat)abstract
    • We use the light-curve and spectral synthesis code JEKYLL to calculate a set of macroscopically mixed type IIb supernova (SN) models, which are compared to both previously published and new late-phase observations of SN 2020acat. The models differ in the initial mass, in the radial mixing and expansion of the radioactive material, and in the properties of the hydrogen envelope. The best match to the photospheric and nebular spectra and light curves of SN 2020acat is found for a model with an initial mass of 17 M⊙, strong radial mixing and expansion of the radioactive material, and a 0.1 M⊙ hydrogen envelope with a low hydrogen mass fraction of 0.27. The most interesting result is that strong expansion of the clumps containing radioactive material seems to be required to fit the observations of SN 2020acat both in the diffusion phase and in the nebular phase. These Ni bubbles are expected to expand due to heating from radioactive decays, but the degree of expansion is poorly constrained. Without strong expansion, there is a tension between the diffusion phase and the subsequent evolution, and models that fit the nebular phase produce a diffusion peak that is too broad. The diffusion-phase light curve is sensitive to the expansion of the Ni bubbles because the resulting Swiss-cheese-like geometry decreases the effective opacity and therefore the diffusion time. This effect has not been taken into account in previous light-curve modelling of stripped-envelope SNe, which may lead to a systematic underestimate of their ejecta masses. In addition to strong expansion, strong mixing of the radioactive material also seems to be required to fit the diffusion peak. It should be emphasized, however, that JEKYLL is limited to a geometry that is spherically symmetric on average, and large-scale asymmetries may also play a role. The relatively high initial mass found for the progenitor of SN 2020acat places it at the upper end of the mass distribution of type IIb SN progenitors, and a single-star origin cannot be excluded.
  •  
9.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Type Ibn Supernovae Show Photometric Homogeneity and Spectral Diversity at Maximum Light
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 836:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by low-velocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN 2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full Type Ibn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most Type Ibn light curves are quite similar in shape, declining at rates around 0.1 mag day(-1) during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow P Cygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy