SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patel Mitesh) "

Sökning: WFRF:(Patel Mitesh)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Einarsson, Einar Jón, et al. (författare)
  • Decreased postural control in adult survivors of childhood cancer treated with chemotherapy
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of cancer treatment is to secure survival. However, as chemotherapeutic agents can affect the central and peripheral nervous systems, patients must undergo a process of central compensation. We explored the effectiveness of this compensation process by measuring postural behaviour in adult survivors of childhood cancer treated with chemotherapy (CTS). We recruited sixteen adults treated with chemotherapy in childhood for malignant solid (non-CNS) tumours and 25 healthy age-matched controls. Subjects performed posturography with eyes open and closed during quiet and perturbed standing. Repeated balance perturbations through calf vibrations were used to study postural adaptation. Subjects were stratified into two groups (treatment before or from 12 years of age) to determine age at treatment effects. Both quiet (p = 0.040) and perturbed standing (p ≤ 0.009) were significantly poorer in CTS compared to controls, particularly with eyes open and among those treated younger. Moreover, CTS had reduced levels of adaptation compared to controls, both with eyes closed and open. Hence, adults treated with chemotherapy for childhood cancer may suffer late effects of poorer postural control manifested as reduced contribution of vision and as reduced adaptation skills. These findings advocate development of chemotherapeutic agents that cause fewer long-term side effects when used for treating children.
  •  
3.
  • Einarsson, Einar Jón, et al. (författare)
  • Elevated visual dependency in young adults after chemotherapy in childhood
  • 2018
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Chemotherapy in childhood can result in long-term neurophysiological side-effects, which could extend to visual processing, specifically the degree to which a person relies on vision to determine vertical and horizontal (visual dependency). We investigated whether adults treated with chemotherapy in childhood experience elevated visual dependency compared to controls and whether any difference is associated with the age at which subjects were treated. Visual dependency was measured in 23 subjects (mean age 25.3 years) treated in childhood with chemotherapy (CTS) for malignant, solid, non-CNS tumors. We also stratified CTS into two groups: those treated before 12 years of age and those treated from 12 years of age and older. Results were compared to 25 healthy, age-matched controls. The subjective visual horizontal (SVH) and vertical (SVV) orientations was recorded by having subjects position an illuminated rod to their perceived horizontal and vertical with and without a surrounding frame tilted clockwise and counter-clockwise 20 from vertical. There was no significant difference in rod accuracy between any CTS groups and controls without a frame. However, when assessing visual dependency using a frame, CTS in general (p = 0.006) and especially CTS treated before 12 years of age (p = 0.001) tilted the rod significantly further in the direction of the frame compared to controls. Our findings suggest that chemotherapy treatment before 12 years of age is associated with elevated visual dependency compared to controls, implying a visual bias during spatial activities. Clinicians should be aware of symptoms such as visual vertigo in adults treated with chemotherapy in childhood.
  •  
4.
  • Einarsson, Einar-Jon, et al. (författare)
  • Oculomotor Deficits after Chemotherapy in Childhood.
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:1, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • Advances in the diagnosis and treatment of pediatric malignancies have substantially increased the number of childhood cancer survivors. However, reports suggest that some of the chemotherapy agents used for treatment can cross the blood brain barrier which may lead to a host of neurological symptoms including oculomotor dysfunction. Whether chemotherapy at young age causes oculomotor dysfunction later in life is unknown. Oculomotor performance was assessed with traditional and novel methods in 23 adults (mean age 25.3 years, treatment age 10.2 years) treated with chemotherapy for a solid malignant tumor not affecting the central nervous system. Their results were compared to those from 25 healthy, age-matched controls (mean age 25.1 years). Correlation analysis was performed between the subjective symptoms reported by the chemotherapy treated subjects (CTS) and oculomotor performance. In CTS, the temporal control of the smooth pursuit velocity (velocity accuracy) was markedly poorer (p<0.001) and the saccades had disproportionally shorter amplitude than normal for the associated saccade peak velocity (main sequence) (p = 0.004), whereas smooth pursuit and saccade onset times were shorter (p = 0.004) in CTS compared with controls. The CTS treated before 12 years of age manifested more severe oculomotor deficits. CTS frequently reported subjective symptoms of visual disturbances (70%), unsteadiness, light-headedness and that things around them were spinning or moving (87%). Several subjective symptoms were significantly related to deficits in oculomotor performance. To conclude, chemotherapy in childhood or adolescence can result in severe oculomotor dysfunctions in adulthood. The revealed oculomotor dysfunctions were significantly related to the subjects' self-perception of visual disturbances, dizziness, light-headedness and sensing unsteadiness. Assessments of oculomotor function may, thus, offer an objective method to track and rate the level of neurological complications following chemotherapy.
  •  
5.
  • Fransson, Per-Anders, et al. (författare)
  • Changes in multi-segmented body movements and EMG activity while standing on firm and foam support surfaces.
  • 2007
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6327 .- 1439-6319. ; 101:1, s. 81-89
  • Tidskriftsartikel (refereegranskat)abstract
    • Postural control ensures stability during both static posture and locomotion by initiating corrective adjustments in body movement. This is particularly important when the conditions of the support surface change. We investigated the effects of standing on a compliant foam surface using 12 normal subjects (mean age 26 years) in terms of: linear movements at the head, shoulder, hip and knee; EMG activity of the tibialis anterior and gastrocnemius muscles and torques towards the support surface. As subjects repeated the trials with eyes open or closed, we were also able to determine the effects of vision on multi-segmented body movements during standing upon different support surface conditions. As expected, EMG activity, torque variance values and body movements at all measured positions increased significantly when standing on foam compared with the firm surface. Linear knee and hip movements increased more, relative to shoulder and head movements while standing on foam. Vision stabilized the head and shoulder movements more than hip and knee movements while standing on foam support surface. Moreover, vision significantly reduced the tibialis anterior EMG activity and torque variance during the trials involving foam. In conclusion, the foam support surface increased corrective muscle and torque activity, and changed the firm-surface multi-segmented body movement pattern. Vision improved the ability of postural control to handle compliant surface conditions. Several essential features of postural control have been found from recording movements from multiple points on the body, synchronized with recording torque and EMG.
  •  
6.
  • Fransson, Per-Anders, et al. (författare)
  • Deep Brain Stimulation in the Subthalamic Nuclei Alters Postural Alignment and Adaptation in Parkinson’s Disease
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson’s disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.
  •  
7.
  • Fransson, Per-Anders, et al. (författare)
  • Deep brain stimulation in the subthalamic nuclei alters postural alignment and adaptation in Parkinson's disease
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Parkinson's disease (PD) can produce postural abnormalities of the standing body position such as kyphosis. We investigated the effects of PD, deep brain stimulation (DBS) in the subthalamic nucleus (STN), vision and adaptation on body position in a well-defined group of patients with PD in quiet standing and during balance perturbations. Ten patients with PD and 25 young and 17 old control participants were recruited. Body position was measured with 3D motion tracking of the ankle, knee, hip, shoulder and head. By taking the ankle as reference, we mapped the position of the joints during quiet standing and balance perturbations through repeated calf muscle vibration. We did this to explore the effect of PD, DBS in the STN, and vision on the motor learning process of adaptation in response to the repeated stimulus. We found that patients with PD adopt a different body position with DBS ON vs. DBS OFF, to young and old controls, and with eyes open vs. eyes closed. There was an altered body position in PD with greater flexion of the head, shoulder and knee (p≤0.042) and a posterior position of the hip with DBS OFF (p≤0.014). With DBS ON, body position was brought more in line with the position taken by control participants but there was still evidence of greater flexion at the head, shoulder and knee. The amplitude of movement during the vibration period decreased in controls at all measured sites with eyes open and closed (except at the head in old controls with eyes open) showing adaptation which contrasted the weaker adaptive responses in patients with PD. Our findings suggest that alterations of posture and greater forward leaning with repeated calf vibration, are independent from reduced movement amplitude changes. DBS in the STN can significantly improve body position in PD although the effects are not completely reversed. Patients with PD maintain adaptive capabilities by leaning further forward and reducing movement amplitude despite their kyphotic posture.
  •  
8.
  • Fransson, Per-Anders, et al. (författare)
  • Effects of 24-hour and 36-hour sleep deprivation on smooth pursuit and saccadic eye movements.
  • 2008
  • Ingår i: Journal of Vestibular Research. - 1878-6464. ; 18:4, s. 209-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Sleep restrictions and sleep deprivation have become common in modern society, as many people report daily sleep below the recommended 8 hours per night. This study aimed to examine the effects of sleep deprivation on oculomotor performance by recording smooth pursuit and saccadic eye movements after 24 and 36 hours of sleep deprivation. Another objective was to determine whether detected changes in oculomotor performance followed fluctuations according to a circadian rhythm and/or subjective Visuo-Analogue sleepiness Scale scores. Oculomotor responses were recorded from 18 subjects using electronystagmography, and comprised measurements of accuracy (i.e., the percentage of time the eye movement velocity was within the target velocity boundaries), velocity and latency. Continuous EEG recordings were used to validate that subjects had remained awake throughout the 36-hour period. Our findings showed that sleep deprivation deteriorated smooth pursuit gain, smooth pursuit accuracy and saccade velocity. Additionally, the ratio between saccade velocity and saccade amplitude was significantly decreased by sleep deprivation. However, as the length of sleep deprivation increased, only smooth pursuit gain deteriorated further, whereas there were signs of improvement in smooth pursuit accuracy measurements. The latter observation suggests that smooth pursuit accuracy might be affected by the circadian rhythm of alertness. Surprisingly, high subjective scores of sleepiness correlated in most cases with better saccade performance, especially after 36 hours of sleep deprivation, suggesting that awareness of sleepiness might make subjects perform better during saccade assessments. To conclude, oculomotor function clearly decreased after sleep deprivation, but the performance deteriorations were complex and not necessarily correlated with subjectively felt sleepiness.
  •  
9.
  • Fransson, Per-Anders, et al. (författare)
  • Exploring the Effects of Deep Brain Stimulation and Vision on Tremor in Parkinson's Disease : Benefits from Objective Methods
  • 2020
  • Ingår i: Journal of NeuroEngineering and Rehabilitation. - : Springer Science and Business Media LLC. - 1743-0003. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Tremor is a cardinal symptom of Parkinson's disease (PD) that may cause severe disability. As such, objective methods to determine the exact characteristics of the tremor may improve the evaluation of therapy. This methodology study aims to validate the utility of two objective technical methods of recording Parkinsonian tremor and evaluate their ability to determine the effects of Deep Brain Stimulation (DBS) of the subthalamic nucleus and of vision.METHODS: We studied 10 patients with idiopathic PD, who were responsive to L-Dopa and had more than 1 year use of bilateral subthalamic nucleus stimulation. The patients did not have to display visible tremor to be included in the study. Tremor was recorded with two objective methods, a force platform and a 3 dimensional (3D) motion capture system that tracked movements in four key proximal sections of the body (knee, hip, shoulder and head). They were assessed after an overnight withdrawal of anti-PD medications with DBS ON and OFF and with eyes open and closed during unperturbed and perturbed stance with randomized calf vibration, using a randomized test order design.RESULTS: Tremor was detected with the Unified Parkinson's Disease Rating Scale (UPDRS) in 6 of 10 patients but only distally (hands and feet) with DBS OFF. With the force platform and the 3D motion capture system, tremor was detected in 6 of 10 and 7 of 10 patients respectively, mostly in DBS OFF but also with DBS ON in some patients. The 3D motion capture system revealed that more than one body section was usually affected by tremor and that the tremor amplitude was non-uniform, but the frequency almost identical, across sites. DBS reduced tremor amplitude non-uniformly across the body. Visual input mostly reduced tremor amplitude with DBS ON.CONCLUSIONS: Technical recording methods offer objective and sensitive detection of tremor that provide detailed characteristics such as peak amplitude, frequency and distribution pattern, and thus, provide information that can guide the optimization of treatments. Both methods detected the effects of DBS and visual input but the 3D motion system was more versatile in that it could detail the presence and properties of tremor at individual body sections.
  •  
10.
  • Fransson, Per-Anders, et al. (författare)
  • Oculomotor deficits caused by 0.06% and 0.10% blood alcohol concentrations and relationship to subjective perception of drunkenness.
  • 2010
  • Ingår i: Clinical Neurophysiology. - : Elsevier BV. - 1872-8952 .- 1388-2457. ; Jul 1, s. 2134-2142
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The visual system is vital during critical activities such as driving. Studying how alcohol compromises the visual system physiologically is therefore important for safety reasons. The objective of the study was to investigate alcohol-related impairments in visual tasks performed under controlled breath alcohol concentrations (BAC) to determine dose-dependent effects. METHODS: Alcohol's effects on smooth pursuit and saccadic eye movements at 0.06% and 0.10% BAC were examined whilst recording alcohol levels by real-time measurements using a high precision breath analyzer. Oculomotor performance was recorded from 25 subjects by electronystagmography comprising measurements of smooth pursuit gain, saccade velocity, saccade accuracy and two novel parameters further describing oculomotor performance. RESULTS: Alcohol deteriorated accuracy of smooth pursuit movements (p<0.001) and saccadic velocities (p<0.01) at 0.06% BAC. At 0.10% BAC, smooth pursuit gains (p<0.01), saccade accuracies and saccade latencies (p<0.01) were also affected. The ratio between saccade velocity and saccade amplitude decreased significantly under alcohol intoxication (p<0.01). Self-perceptions of drunkenness correlated well with changes in smooth pursuit accuracy, but poorly with other oculomotor measures. CONCLUSIONS: Several of the smooth pursuit and saccade functions were altered dose-dependently by alcohol and small changes in BAC substantially changed the effects observed. Additionally, alcohol altered the relationship between saccade velocity and saccade amplitude, diminishing the capacity for saccades to reach high peak velocities. SIGNIFICANCE: The alcohol-induced oculomotor deficits, which were found already at 0.06% BAC by our more sensitive analysis methods, may have safety implications for tasks that rely on visual motor control and visual feedback.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy