SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patscheider J.) "

Sökning: WFRF:(Patscheider J.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Bottger, P. H. M., et al. (författare)
  • Hard wear-resistant coatings with anisotropic thermal conductivity for high thermal load applications
  • 2014
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 116:1, s. 013507-
  • Tidskriftsartikel (refereegranskat)abstract
    • High thermal load applications such as high speed dry cutting lead to high temperatures in the coated tool substrate that can soften the tool and high temperature gradients that can put stress on the coating/tool interface. In this work, theoretical considerations are presented for multilayer and graded protective coatings that can induce a significant anisotropy in their thermal conductivity. Solution of the heat equation shows that anisotropy of thermal conductivity has the potential to reduce temperatures and temperature gradients arising due to brief, localized heat at the coating surface ("hot-spots"). Experimental realization of high anisotropy is demonstrated in TiN/AlCrN multilayer coatings with variable layer thickness. In the coating with 50 nm bilayer periodicity, the highest anisotropy was obtained with a value of kappa(parallel to)/kappa(perpendicular to) = 3.0 +/- 0.9. Time-domain thermoreflectance is used to measure in-plane and cross-plane thermal conductivity of fabricated coatings. The observed high values of anisotropy of thermal conductivity are compared with theoretical predictions and its realisation is discussed with regard to the coating microstructure.
  •  
3.
  • Greczynski, Grzegorz, et al. (författare)
  • Control of Ti1-xSixN nanostructure via tunable metal-ion momentum transfer during HIPIMS/DCMS co-deposition
  • 2015
  • Ingår i: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 280, s. 174-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Ti1-xSixN (0 less than= x less than= 0.26) thin films are grown in mixed Ar/N-2 discharges using hybrid high-power pulsed and dc magnetron co-sputtering (HIPIMS/DCMS). In the first set of experiments, the Si target is powered in HIPIMS mode and the Ti target in DCMS; the positions of the targets are then switched for the second set. In both cases, the Si concentration in co-sputtered films, deposited at T-s = 500 degrees C, is controlled by adjusting the average DCMS target power. A pulsed substrate bias of -60 V is applied in synchronous with the HIPIMS pulse. Depending on the type of pulsed metal-ion irradiation incident at the growing film, Ti+/Ti2+ vs. Si+/Si2+, completely different nanostructures are obtained. Ti+/Ti2+ irradiation during Ti-HIPIMS/Si-DCMS deposition leads to a phase-segregated nanocolumnar structure with TiN-rich grains encapsulated in a SiNz tissue phase, while Si+/Si2+ ion irradiation in the Si-HIPIMS/Ti-DCMS mode results in the formation of Ti1-xSixN solid solutions with x less than= 024. Film properties, including hardness, modulus of elasticity, and residual stress exhibit a dramatic dependence on the choice of target powered by HIPIMS. Ti-HIPIMS/Si-DCMS TiSiN nanocomposite films are superhard over a composition range of 0.04 less than= x less than= 0.26, which is significantly wider than previously reported. The hardness H of films with 0.13 less than= x less than= 0.26 is similar to 42 GPa; however, the compressive stress is also high, ranging from -6.7 to -8.5 GPa. Si-HIPIMS/Ti-DCMS films are softer at H similar to 14 GPa with 0.03 less than= x less than= 0.24, and essentially stress-free (sigma similar to 0.5 GPa). Mass spectroscopy analyses at the substrate position reveal that the doubly-to-singly ionized metal-ion flux ratio during HIPIMS pulses is 0.05 for Si and 029 for Ti due to the difference between the second ionization potentials of Si and Ti vs. the first ionization potential of the sputtering gas. The average momentum transfer to the film growth surface per deposited atom per pulse less than p(d)greater than is similar to 20 x higher during Ti-HIPIMS/Si-DCMS, which results in significantly higher adatom mean-free paths (mfps) leading, in turn, to a phase-segregated nanocolumnar structure. In contrast, relatively low less than p(d)greater than values during Si-HIPIMS/Ti-DCMS provide near-surface mixing with lower adatom mfps to form Ti1-xSixN solid solutions over a very wide composition range with x up to 0.24. Relaxed lattice constants decrease linearly, in agreement with ab-initio calculations for random Ti1-xSixN alloys, with increasing x. (C) 2015 Elsevier B.V. All rights reserved.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Mockuté, Aurelija, et al. (författare)
  • Age hardening in (Ti1-xAlx)B2+Delta thin films
  • 2017
  • Ingår i: Scripta Materialia. - : Elsevier BV. - 1359-6462 .- 1872-8456. ; 127, s. 122-126
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin films of (Ti0.71Al0.29)B2+1.08 have been deposited by magnetron sputtering. Post-deposition annealing at 1000 degrees C for 1 h results in increased hardness and elastic modulus, from 32 to 37 GPa and from 436 to 461 GPa, respectively. In both as-deposited and annealed states the films adhere well to the substrate, indicating no considerable internal stress. The initial high hardness is attributed to a columnar microstructure consisting of crystalline (Ti,Al)B-2 columns separated by an amorphous B matrix. The observed age hardening corresponds to phase separation within the (Ti,Al)B-2 columns including the formation of Ti-deficient crystallites within the grain interior upon annealing.
  •  
10.
  • Mockuté, Aurelija, et al. (författare)
  • Synthesis and characterization of (Ti1-xAlx)B2+Delta thin films from combinatorial magnetron sputtering
  • 2019
  • Ingår i: Thin Solid Films. - : ELSEVIER SCIENCE SA. - 0040-6090 .- 1879-2731. ; 669, s. 181-187
  • Tidskriftsartikel (refereegranskat)abstract
    • (Ti1-xAlx)B2+Delta films with a lateral composition gradient of x = [0.30-0.66] and Delta = [0.07-1.22] were deposited on an Al2O3 wafer by dual magnetron sputtering at 400 degrees C from sintered TiB2 and AlB2 targets. Composition analysis indicates that higher Ti:Al ratios favor overstoichiometry in B and a reduced incorporation of O. Transmission electron microscopy reveals distinctly different microstructures of Ti- and Al-rich compositions, with formation of characteristic conical growth features for the latter along with a lower degree of crystallinity and significantly less tissue phase from B segregation at the grain boundaries. For Al-rich films, phase separation into Ti- and Al-rich diboride nanometer-size domains is observed and interpreted as surface-initiated spinodal decomposition. The hardness of the films ranges from 14 to 28 GPa, where the higher values were obtained for the Ti-rich regions of the metal boride.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy