SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Patzak Andreas) "

Sökning: WFRF:(Patzak Andreas)

  • Resultat 1-10 av 26
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Carlström, Mattias, et al. (författare)
  • Nitric oxide deficiency and increased adenosine response of afferent arterioles in hydronephrotic mice with hypertension
  • 2008
  • Ingår i: Hypertension. - : American Heart Association. - 0194-911X .- 1524-4563. ; 51:5, s. 1386-1392
  • Forskningsöversikt (refereegranskat)abstract
    • Afferent arterioles were used to investigate the role of adenosine, angiotensin II, NO, and reactive oxygen species in the pathogenesis of increased tubuloglomerular feedback response in hydronephrosis. Hydronephrosis was induced in wild-type mice, superoxide dismutase-1 overexpressed mice (superoxide-dismutase-1 transgenic), and deficient mice (superoxide dismutase-1 knockout). Isotonic contractions in isolated perfused arterioles and mRNA expression of NO synthase isoforms, adenosine, and angiotensin II receptors were measured. In wild-type mice, N(G)-nitro-L-arginine methyl ester (L-NAME) did not change the basal arteriolar diameter of hydronephrotic kidneys (-6%) but reduced it in control (-12%) and contralateral arterioles (-43%). Angiotensin II mediated a weaker maximum contraction of hydronephrotic arterioles (-18%) than in control (-42%) and contralateral arterioles (-49%). The maximum adenosine-induced constriction was stronger in hydronephrotic (-19%) compared with control (-8%) and contralateral kidneys (+/-0%). The response to angiotensin II became stronger in the presence of adenosine in hydronephrotic kidneys and attenuated in contralateral arterioles. L-NAME increased angiotensin II responses of all of the groups but less in hydronephrotic kidneys. The mRNA expression of endothelial NO synthase and inducible NO synthase was upregulated in the hydronephrotic arterioles. No differences were found for adenosine or angiotensin II receptors. In superoxide dismutase-1 transgenic mice, strong but similar L-NAME response (-40%) was observed for all of the groups. This response was totally abolished in arterioles of hydronephrotic superoxide dismutase-1 knockout mice. In conclusion, hydronephrosis is associated with changes in the arteriolar reactivity of both hydronephrotic and contralateral kidneys. Increased oxidative stress, reduced NO availability, and stronger reactivity to adenosine of the hydronephrotic kidney may contribute to the enhanced tubuloglomerular feedback responsiveness in hydronephrosis and be involved in the development of hypertension.
  •  
2.
  • Carlström, Mattias, et al. (författare)
  • Superoxide Dismutase 1 Limits Renal Microvascular Remodeling and Attenuates Arteriole and Blood Pressure Responses to Angiotensin II via Modulation of Nitric Oxide Bioavailability
  • 2010
  • Ingår i: Hypertension. - 0194-911X .- 1524-4563. ; 56:5, s. 907-913
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative stress is associated with vascular remodeling and increased preglomerular resistance that are both implicated in the pathogenesis of renal and cardiovascular disease. Angiotensin II induces superoxide production, which is metabolized by superoxide dismutase (SOD) or scavenged by NO. We investigated the hypothesis that SOD1 regulates renal microvascular remodeling, blood pressure, and arteriolar responsiveness and sensitivity to angiotensin II using SOD1-transgenic (SOD1-tg) and SOD1-knockout (SOD1-ko) mice. Blood pressure, measured telemetrically, rose more abruptly during prolonged angiotensin II infusion in SOD1-ko mice. The afferent arteriole media: lumen ratios were reduced in SOD1-tg and increased in SOD1-ko mice. Afferent arterioles from nontreated wild types had graded contraction to angiotensin II (sensitivity: 10(-9) mol/L; responsiveness: 40%). Angiotensin II contractions were less sensitive (10(-8) mol/L) and responsive (14%) in SOD1-tg but more sensitive (10(-13) mol/L) and responsive (89%) in SOD1-ko mice. Arterioles from SOD1-ko had 4-fold increased superoxide formation with angiotensin II at 10(-9) mol/L. N-G-nitro-L-arginine methyl ester reduced arteriole diameter of SOD1-tg and enhanced angiotensin II sensitivity and responsiveness of wild-type and SOD1-tg mice to the level of SOD1-ko mice. SOD mimetic treatment with Tempol increased arteriole diameter and normalized the enhanced sensitivity and responsiveness to angiotensin II of SOD1-ko mice but did not affect wild-type or SOD1-tg mice. Neither SOD1 deficiency nor overexpression was associated with changes in nitrate/nitrite excretion or renal mRNA expression of NO synthase, NADPH oxidase, or SOD2/SOD3 isoforms and angiotensin II receptors. In conclusion, SOD1 limits afferent arteriole remodeling and reduces sensitivity and responsiveness to angiotensin II by reducing superoxide and maintaining NO bioavailability. This may prevent an early and exaggerated blood pressure response to angiotensin II.
  •  
3.
  • Lai, En Yin, et al. (författare)
  • Adenosine restores angiotensin II-induced contractions by receptor-independent enhancement of calcium sensitivity in renal arterioles
  • 2006
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 99:10, s. 1117-1124
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine is coupled to energy metabolism and regulates tissue blood flow by modulating vascular resistance. In this study, we investigated isolated, perfused afferent arterioles of mice, which were subjected to desensitization during repeated applications of angiotensin II. Exogenously applied adenosine restores angiotensin II-induced contractions by increasing calcium sensitivity of the arterioles, along with augmented phosphorylation of the regulatory unit of the myosin light chain. Adenosine restores angiotensin II-induced contractions via intracellular action, because inhibition of adenosine receptors do not prevent restoration, but inhibition of NBTI sensitive adenosine transporters does. Restoration was prevented by inhibition of Rho-kinase, protein kinase C, and the p38 mitogen-activated protein kinase, which modulate myosin light chain phosphorylation and thus calcium sensitivity in the smooth muscle. Furthermore, adenosine application increased the intracellular ATP concentration in LuciHEK cells. The results of the study suggest that restoration of the angiotensin II-induced contraction by adenosine is attributable to the increase of the calcium sensitivity by phosphorylation of the myosin light chain. This can be an important component of vascular control during ischemic and hypoxic conditions. Additionally, this mechanism may contribute to the mediation of the tubuloglomerular feedback by adenosine in the juxtaglomerular apparatus of the kidney.
  •  
4.
  • Lai, En Yin, et al. (författare)
  • Contribution of adenosine receptors in the control of arteriolar tone and adenosine-angiotensin II interaction
  • 2006
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 70:4, s. 690-698
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine (Ado) mediates vasoconstriction via A(1)-Ado receptors and vasodilation via A(2)-Ado receptors in the kidney. It interacts with angiotensin II (Ang II), which is important for renal hemodynamics and tubuloglomerular feedback (TGF). The aim was to investigate the function of Ado receptors in the Ado -Ang II interaction in mouse microperfused, afferent arterioles. Ado (10(-11)-10(-4) mol/l) caused a biphasic response: arteriolar diameters were reduced (-7%) at Ado 10(-11)-10(-9) mol/l and returned to control values at higher concentrations. Treatment with Ang II (10(-10) mol/l) transformed the response into a concentration-dependent constriction. N-6-cyclopentyladenosine (A(1)-Ado receptor agonist) reduced diameters (12% at 10(-6) mol/l). Application of CGS21680 (10(-12)-10(-4) mol/l, A(2A) receptor agonist) increased the diameter by 13%. Pretreatment with ZM241385 (A(2A)-Ado receptor antagonist) alone or in combination with MRS1706 (A(2B)-Ado receptor antagonist) resulted in a pure constriction upon Ado, whereas 8-cyclopentyltheophylline (CPT) (A(1)-Ado receptor antagonist) inhibited the constrictor response. Afferent arterioles of mice lacking A(1)-Ado receptor did not show constriction upon Ado. Treatment with Ado (10(-8) mol/l) increased the response upon Ang II, which was blocked by CPT. Ado (10(-5) mol/l) did not influence the Ang II response, but an additional blockade of A(2)-Ado receptors enhanced it. The action of Ado on constrictor A(1)-Ado receptors and dilatory A(2)-Ado receptors modulates the interaction with Ang II. Both directions of Ado-Ang II interaction, which predominantly leads to an amplification of the contractile response, are important for the operation of the TGF.
  •  
5.
  • Patzak, Andreas, et al. (författare)
  • Angiotensin II response in afferent arterioles of mice lacking either the endothelial or neuronal isoform of nitric oxide synthase
  • 2008
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 294:2, s. R429-R437
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of the study is to evaluate the impact of nitric oxide (NO) produced by endothelial NO synthase (eNOS) and neuronal NOS (nNOS) on the angiotensin II response in afferent arterioles (Af). Dose responses were assessed for angiotensin II in microperfused Af of mice homozygous for disruption of the eNOS gene [ eNOS(-/-)], or nNOS gene [ nNOS(-/-)], and their wild-type controls, eNOS(+/+) and nNOS(+/+). Angiotensin II at 10(-8) and 10(-6) mol/l reduced the lumen to 69% and 68% in eNOS(+/+), and to 59% and 50% in nNOS(+/+). N-G-nitro-L-arginine methyl ester (L-NAME) did not change basal arteriolar diameters, but augmented angiotensin II contraction, reducing diameters to 23% and 13% in eNOS(+/+), and 7% and 10% in nNOS(+/+) at 10(-8) and 10(-6) mol/l. The response to angiotensin II was enhanced in nNOS(-/-) mice (41% and 25% at 10(-8) and 10(-6) mol/l) and even more enhanced in eNOS(+/+) mice (12% and 9%) compared with nNOS(+/+) and eNOS(+/+). L-NAME led to complete constriction of Af in these groups. Mediato-lumen ratios of Af did not differ between controls and gene-deficient mice. mRNA expression of angiotensin II receptor types 1A and 1B and type 2 also did not differ. The results reveal that angiotensin II-induced release of NO from both eNOS and nNOS significantly contributes to the control of Af. Results also suggest that eNOS-derived NO is of greater importance than nNOS-derived NO in this isolated arteriolar preparation.
  •  
6.
  • Petersson, Joel, et al. (författare)
  • eNOS involved in colitis-induced mucosal blood flow increase
  • 2007
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 293:6, s. G1281-G1287
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of NO in inflammatory bowel disease is controversial. Studies indicate that endothelial nitric oxide synthase (eNOS) might be involved in protecting the mucosa against colonic inflammation. The aim of this study was to investigate the involvement of nitric oxide (NO) in regulating colonic mucosal blood flow in two different colitis models in rats. In anesthetized control and colitic rats, the distal colon was exteriorized and the mucosa visualized. Blood flow (laser-Doppler flowmetry) and arterial blood pressure were continuously monitored throughout the experiments, and vascular resistance was calculated. Trinitrobenzene sulfonic acid (TNBS) or dextran sulfate sodium (DSS) was used to induce colitis. All groups were given the NOS inhibitor N-omega-nitro-Larginine (L-NNA) or the inducible NOS (iNOS) inhibitor L-N-6-(1-iminoethyl)- lysine (L-NIL). iNOS, eNOS, and neuronal NOS (nNOS) mRNA in colonic samples were investigated with real-time RT-PCR. Before NOS inhibition, colonic mucosal blood flow, expressed as perfusion units, was higher in both colitis models compared with the controls. The blood flow was reduced in the TNBS- and DSS-treated rats during L-NNA administration but was not altered in the control group. Vascular resistance increased more in the TNBS- and DSS-treated rats than in the control rats, indicating a higher level of vasodilating NO in the colitis models. L-NIL did not alter blood pressure or blood flow in any of the groups. iNOS and eNOS mRNA increased in both colitis models, whereas nNOS remained at the control level. TNBS- and DSS-induced colitis results in increased colonic mucosal blood flow, most probably due to increased eNOS activity.
  •  
7.
  • Schildroth, Janice, et al. (författare)
  • Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice
  • 2011
  • Ingår i: Nephrology, Dialysis and Transplantation. - : Oxford University Press (OUP). - 0931-0509 .- 1460-2385. ; 26:3, s. 779-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. Methods. We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB (-/-)] and wild types [ETB(+/+)] were microperfused. Results. ET-1 constricted AA stronger than EA in ETB (-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. Conclusions. ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.
  •  
8.
  • Carlström, Mattias, et al. (författare)
  • Role of NOX2 in the regulation of afferent arteriole responsiveness
  • 2009
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 296:1, s. R72-R79
  • Tidskriftsartikel (refereegranskat)abstract
    • NADPH oxidases (NOX) are the major source of reactive oxygen species (ROS) in the vasculature and contribute to the control of renal perfusion. The role of NOX2 in the regulation of blood pressure and afferent arteriole responsiveness was investigated in NOX2(-/-) and wild-type mice. Arteriole constrictions to ANG II (10(-14)-10(-6) mol/l) were weaker in NOX2(-/-) compared with wild types. N(omega)-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/l) treatment reduced basal diameters significantly more in NOX2(-/-) (-18%) than in wild types (-6%) and augmented ANG II responses. Adenosine (10(-11)-10(-4) mol/l) constricted arterioles of wild types but not of NOX2(-/-). However, simultaneous inhibition of adenosine type-2 receptors induced vasoconstriction, which was stronger in NOX2(-/-). Adenosine (10(-8) mol/l) enhanced the ANG II response in wild type, but not in NOX2(-/-). This sensitizing effect by adenosine was abolished by apocynin. Chronic ANG II pretreatment (14 days) did not change the ANG II responses in NOX2(-/-), but strengthened the response in wild types. ANG II pretreatment augmented the l-NAME response in NOX2(-/-) (-33%), but not in wild types. Simultaneous application of l-NAME and ANG II caused a stronger constriction in the NOX2(-/-) (-64%) than in wild types (-46%). Basal blood pressures were similar in both genotypes, however, chronic ANG II infusion elevated blood pressure to a greater extent in wild-type (15 +/- 1%) than in NOX2(-/-) (8 +/- 1%) mice. In conclusion, NOX2 plays an important role in the control of afferent arteriole tone and is involved in the contractile responses to ANG II and/or adenosine. NOX2 can be activated by elevated ANG II and may play an important role in ANG II-induced hypertension. NOX2-derived ROS scavenges nitric oxide, causing subsequent nitric oxide-deficiency.
  •  
9.
  • Gao, Xiang, et al. (författare)
  • Adenosine A(1)-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment
  • 2011
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 301:6, s. R1669-R1681
  • Tidskriftsartikel (refereegranskat)abstract
    • Adenosine mediates tubuloglomerular feedback responses via activation of A(1)-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A(1)-receptor knockout (A(1)(-/-)) and wild-type (A(1)(+/+)) mice we investigated the hypothesis that A(1)-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME) or ANG II treatment. The hypertensive responses to L-NAME and ANG II were clearly attenuated in A(1)(-/-) mice. Arteriolar contractions to L-NAME (10(-4) mol/l; 15 min) and cumulative ANG II application (10(-12) to 10(-6) mol/l) were lower in A(1)(-/-) mice. Simultaneous treatment with tempol (10(-4) mol/l; 15 min) attenuated arteriolar responses in A(1)(+/+) but not in A(1)(-/-) mice, suggesting differences in ROS formation. Chronic treatment with L-NAME or ANG II did not alter arteriolar responses in A(1)(-/-) mice, but enhanced maximal contractions in A(1)(+/+) mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A(1)(+/+) mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A(1)-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A(1)-receptor signaling blunts L-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
  •  
10.
  • Gao, Xiang, et al. (författare)
  • Adenosine A1 receptor-dependent and independent pathways in modulating renal vascular responses to angiotensin II
  • 2015
  • Ingår i: Acta Physiologica. - : Wiley. - 1748-1708 .- 1748-1716. ; 213:1, s. 268-276
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Renal afferent arterioles are the effector site for autoregulation of glomerular perfusion and filtration. There is synergistic interaction between angiotensin II (ANG II) and adenosine (Ado) in regulating arteriolar contraction, however, the mechanisms are not clear. In this context, this study investigated the contribution of A1 receptor dependent and independent signaling mechanisms.METHODS: Isolated perfused afferent arterioles from transgenic mice (A1+/+ and A1-/-) were used for vascular reactivity studies. Cultured vascular smooth muscle cells (VSMC) were used for phosphorylation studies of signaling proteins that induce arteriolar contraction.RESULTS: Maximal arteriolar contraction to ANG II was attenuated in A1-/- (22%) compared with A1+/+ (40%). Simultaneous incubation with low dose Ado (10-8 mol/L) enhanced ANG II-induced contraction in A1+/+ (58%), but also in A1-/- (42%). An Ado transporter inhibitor (NBTI) abolished this synergistic effect in A1-/-, but not in wild-type mice. Incubation with Ado+ANG II increased p38 phosphorylation in aortic VSMC from both genotypes, but treatment with NBTI only blocked phosphorylation in A1-/-. Combination of ANG II+Ado also increased MLC phosphorylation in A1+/+ but not significantly in A1-/-, and NBTI had no effects. In agreement, Ado+ANG II-induced phosphorylation of p38 and MLC in rat preglomerular VSMC was not affected by NBTI. However, during pharmacological inhibition of the A1 receptor simultaneous treatment with NBTI reduced phosphorylation of both p38 and MLC to control levels.CONCLUSION: Interaction between ANG II and Ado in VSMC normally involves A1 receptor signaling, but this can be compensated by receptor independent actions that phosphorylate p38 MAPK and MLC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 26

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy