SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paul Suman) "

Sökning: WFRF:(Paul Suman)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arias, Carolina, et al. (författare)
  • Nuclear proteome analysis of Chlamydomonas with response to CO2 limitation
  • 2020
  • Ingår i: Algal Research. - : Elsevier. - 2211-9264. ; 46
  • Tidskriftsartikel (refereegranskat)abstract
    • Chlamydomonas reinhardtii is a unicellular green alga that can survive at a wide range of inorganic carbon (Ci) concentrations by regulating the activity of a CO2-concentrating mechanism (CCM) as well as other cellular functions. Under CO2 limited conditions, C. reinhardtii cells display a wide range of adaptive responses including changes in photosynthetic electron transport, mitochondria localization in the cells, the structure of the pyrenoid starch sheath, and primary metabolism. In addition to these functional and structural changes, gene and protein expression are also affected. Several physiological aspects of the CO2 response mechanism have been studied in detail. However, the regulatory components (transcription factors and transcriptional regulators) involved in this process are not fully characterized. Here we report a comprehensive analysis of the C. reinhardtii nuclear proteome using liquid chromatography electrospray ionization spectrometry (LC-ESI-MS). The study aims to identify the proteins that govern adaptation to varying CO2 concentrations in Chlamydomonas. The nuclear proteome of C. reinhardtii cells grown in the air at high (5%) and low (0.04%) CO2 concentrations were analyzed. Using this approach, we identified 1378 proteins in total, including 90 putative transcription factors and 27 transcriptional regulators. Characterization of these new regulatory components could shed light on the molecular mechanisms underlying acclimation to CO2 stress.
  •  
2.
  • Bag, Pushan, 1993-, et al. (författare)
  • Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection. Evergreen conifers rely on 'sustained quenching' to protect their photosynthetic machinery during long, cold winters. Here, Bag et al. show that direct energy transfer (spillover) from photosystem II to photosystem I triggered by loss of grana stacking in chloroplast is the major component of sustained quenching in Scots pine.
  •  
3.
  • Bajracharya, Suman, et al. (författare)
  • Advances in cathode designs and reactor configurations of microbial electrosynthesis systems to facilitate gas electro-fermentation
  • 2022
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 354
  • Tidskriftsartikel (refereegranskat)abstract
    • In gas fermentation, a range of chemolithoautotrophs fix single-carbon (C1) gases (CO2 and CO) when H2 or other reductants are available. Microbial electrosynthesis (MES) enables CO2 reduction by generating H2 or reducing equivalents with the sole input of renewable electricity. A combined approach as gas electro-fermentation is attractive for the sustainable production of biofuels and biochemicals utilizing C1 gases. Various platform compounds such as acetate, butyrate, caproate, ethanol, butanol and bioplastics can be produced. However, technological challenges pertaining to the microbe-material interactions such as poor gas-liquid mass transfer, low biomass and biofilm coverage on cathode, low productivities still exist. We are presenting a review on latest developments in MES focusing on the configuration and design of cathodes that can address the challenges and support the gas electro-fermentation. Overall, the opportunities for advancing CO and CO2-based biochemicals and biofuels production in MES with suitable cathode/reactor design are prospected.
  •  
4.
  • Bajracharya, Suman, et al. (författare)
  • Chapter 12 - Advances in gas fermentation processes
  • 2022
  • Ingår i: Current Developments in Biotechnology and Bioengineering. - : Elsevier. - 9780323911672 ; , s. 321-351
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Microbial metabolism enables the sustainable synthesis of fuels and chemicals from gaseous substrates (H2, CO, and CO2), thus drastically diminishing the carbon load in the atmosphere. Various value-added biochemicals and biofuels, such as acetate, methane, ethanol, butanol, butyrate, caproate, and bioplastics, have been produced during the conversion of syngas or H2/CO2, using a variety of microorganisms as biocatalysts. Gas fermentation processes using acetogenic and methanogenic organisms are being extensively investigated. This chapter provides an overview of microbial CO and CO2 conversion technology, with an emphasis on recent developments and integration with renewable electricity for the generation of H2 or other forms of electron donors. A discussion on technological challenges in gas fermentation addresses issues, such as poor mass transfer, low microbial biomass, and low productivity. It also presents possible solutions based on the latest advances in bioelectrochemical processes including microbial gas electrofermentation. Finally, the chapter includes a sustainability analysis of the process and includes a brief update on commercially established companies operating gas fermentation systems. Overall, an integrated approach combining gas fermentation and renewable electricity offers an opportunity for the development of CO and CO2- based biochemical and biofuel production at commercial scale.
  •  
5.
  • Bajracharya, Suman, et al. (författare)
  • Dual cathode configuration and headspace gas recirculation for enhancing microbial electrosynthesis using Sporomusa ovata
  • 2022
  • Ingår i: Chemosphere. - : Elsevier. - 0045-6535 .- 1879-1298. ; 287, Part 3
  • Tidskriftsartikel (refereegranskat)abstract
    • High-rate production of acetate and other value-added products from the reduction of CO2 in microbial electrosynthesis (MES) using acetogens can be achieved with high reducing power where H2 appears as a key electron mediator. H2 evolution using metal cathodes can enhance the availability of H2 to support high-rate microbial reduction of CO2. Due to the low solubility of H2, the availability of H2 remains limited to the bacteria. In this study, we investigated the performances of Sporomusa ovata for CO2 reduction when dual cathodes were used together in an MES, one was regular carbon cathode, and the other was a titanium mesh that allows higher hydrogen evolution. The dual cathode configuration was investigated in two sets of MES, one set had the usual S. ovata inoculated graphite rod, and another set had a synthetic biofilm-imprinted carbon cloth. Additionally, the headspace gas in MES was recirculated to increase the H2 availability to the bacteria in suspension. High-rate CO2 reduction was observed at −0.9 V vs Ag/AgCl with dual cathode configuration as compared to single cathodes. High titers of acetate (up to ∼11 g/L) with maximum instantaneous rates of 0.68–0.7 g/L/d at −0.9 V vs Ag/AgCl were observed, which are higher than the production rates reported in literatures for S. ovata using MES with surface modified cathodes. A high H2 availability supported the high-rate acetate production from CO2 with diminished electricity input.
  •  
6.
  • Bajracharya, Suman, et al. (författare)
  • Microbial Electrosynthesis Using 3D Bioprinting of Sporomusa ovata on Copper, Stainless-Steel, and Titanium Cathodes for CO2 Reduction
  • 2023
  • Ingår i: Fermentation. - : MDPI. - 2311-5637. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acetate can be produced from carbon dioxide (CO2) and electricity using bacteria at the cathode of microbial electrosynthesis (MES). This process relies on electrolytically-produced hydrogen (H2). However, the low solubility of H2 can limit the process. Using metal cathodes to generate H2 at a high rate can improve MES. Immobilizing bacteria on the metal cathode can further proliferate the H2 availability to the bacteria. In this study, we investigated the performances of 3D bioprinting of Sporomusa ovata on three metal meshes—copper (Cu), stainless steel (SS), and titanium (Ti), when used individually as a cathode in MES. Bacterial cells were immobilized on the metal using a 3D bioprinter with alginate hydrogel ink. The bioprinted Ti mesh exhibited higher acetate production (53 ± 19 g/m2/d) at −0.8 V vs. Ag/AgCl as compared to other metal cathodes. More than 9 g/L of acetate was achieved with bioprinted Ti, and the least amount was obtained with bioprinted Cu. Although all three metals are known for catalyzing H2 evolution, the lower biocompatibility and chemical stability of Cu hampered its performance. Stable and biocompatible Ti supported the bioprinted S. ovata effectively. Bioprinting of synthetic biofilm on H2-evolving metal cathodes can provide high-performing and robust biocathodes for further application of MES.
  •  
7.
  • Beer, Tomasz M, et al. (författare)
  • Enzalutamide in metastatic prostate cancer before chemotherapy
  • 2014
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 371:5, s. 33-424
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Enzalutamide is an oral androgen-receptor inhibitor that prolongs survival in men with metastatic castration-resistant prostate cancer in whom the disease has progressed after chemotherapy. New treatment options are needed for patients with metastatic prostate cancer who have not received chemotherapy, in whom the disease has progressed despite androgen-deprivation therapy.METHODS: In this double-blind, phase 3 study, we randomly assigned 1717 patients to receive either enzalutamide (at a dose of 160 mg) or placebo once daily. The coprimary end points were radiographic progression-free survival and overall survival.RESULTS: The study was stopped after a planned interim analysis, conducted when 540 deaths had been reported, showed a benefit of the active treatment. The rate of radiographic progression-free survival at 12 months was 65% among patients treated with enzalutamide, as compared with 14% among patients receiving placebo (81% risk reduction; hazard ratio in the enzalutamide group, 0.19; 95% confidence interval [CI], 0.15 to 0.23; P<0.001). A total of 626 patients (72%) in the enzalutamide group, as compared with 532 patients (63%) in the placebo group, were alive at the data-cutoff date (29% reduction in the risk of death; hazard ratio, 0.71; 95% CI, 0.60 to 0.84; P<0.001). The benefit of enzalutamide was shown with respect to all secondary end points, including the time until the initiation of cytotoxic chemotherapy (hazard ratio, 0.35), the time until the first skeletal-related event (hazard ratio, 0.72), a complete or partial soft-tissue response (59% vs. 5%), the time until prostate-specific antigen (PSA) progression (hazard ratio, 0.17), and a rate of decline of at least 50% in PSA (78% vs. 3%) (P<0.001 for all comparisons). Fatigue and hypertension were the most common clinically relevant adverse events associated with enzalutamide treatment.CONCLUSIONS: Enzalutamide significantly decreased the risk of radiographic progression and death and delayed the initiation of chemotherapy in men with metastatic prostate cancer. (Funded by Medivation and Astellas Pharma; PREVAIL ClinicalTrials.gov number, NCT01212991.).
  •  
8.
  • Berntsson, Elina, et al. (författare)
  • Characterization of Uranyl (UO22+) Ion Binding to Amyloid Beta (Aβ) Peptides : Effects on Aβ Structure and Aggregation
  • 2023
  • Ingår i: ACS Chemical Neuroscience. - 1948-7193. ; 14:15, s. 2618-2633
  • Tidskriftsartikel (refereegranskat)abstract
    • Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer’s disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation. 
  •  
9.
  • Berntsson, Elina, et al. (författare)
  • Lithium ions display weak interaction with amyloid-beta (Aβ) peptides and have minor effects on their aggregation
  • 2021
  • Ingår i: Acta Biochimica Polonica. - : Polskie Towarzystwo Biochemiczne (Polish Biochemical Society). - 0001-527X .- 1734-154X. ; 68:2, s. 169-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is an incurable disease and the main cause of age-related dementia worldwide, despite decades of research. Treatment of AD with lithium (Li) has shown promising results, but the underlying mechanism is unclear. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. The plaques contain also metal ions of e.g. Cu, Fe, and Zn, and such ions are known to interact with Aβ peptides and modulate their aggregation and toxicity. The interactions between Aβ peptides and Li+ions have however not been well investigated. Here, we use a range of biophysical techniques to characterize in vitro interactions between Aβ peptides and Li+ions. We show that Li+ions display weak and non-specific interactions with Aβ peptides, and have minor effects on Aβ aggregation. These results indicate that possible beneficial effects of Li on AD pathology are not likely caused by direct interactions between Aβ peptides and Li+ions.
  •  
10.
  • Berntsson, Elina, et al. (författare)
  • Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides
  • 2023
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-β (Aβ) peptides, and Aβ oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with Aβ peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize Aβ/Ni(II) interactions in vitro, for different Aβ variants: Aβ(1-40), Aβ(1-40)(H6A, H13A, H14A), Aβ(4-40), and Aβ(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length Aβ monomers. Equimolar amounts of Ni(II) ions retard Aβ aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)·Aβ binding affinity is in the low µM range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent Aβ dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in Aβ monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized Aβ oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the Aβ aggregation processes that are involved in AD brain pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21
Typ av publikation
tidskriftsartikel (20)
bokkapitel (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Christakopoulos, Pau ... (5)
Rova, Ulrika (5)
Matsakas, Leonidas (5)
Jarvet, Jüri (4)
Roos, Per M. (3)
Barth, Andreas (3)
visa fler...
Erlinge, David (3)
Gräslund, Astrid (2)
Wärmländer, Sebastia ... (2)
James, Stefan K (2)
Winters, Kenneth J. (2)
Gurbel, Paul A. (2)
Tantry, Udaya S. (2)
Varenhorst, Christop ... (2)
Wikström, Niklas (1)
Sternberg, Cora N. (1)
Janssens, Steven B. (1)
Bajhaiya, Amit K. (1)
Mellema, Garrelt (1)
Svensson, Peter (1)
Hultmark, Sandra, 19 ... (1)
Müller, Christian, 1 ... (1)
Zubarev, Roman A (1)
Jansson, Stefan, 195 ... (1)
Bjartell, Anders (1)
Chowdhury, Simon (1)
Ahn, Kyungjin (1)
Iliev, Ilian T. (1)
Shapiro, Paul R. (1)
Mao, Yi (1)
Mörman, Cecilia (1)
Börjesson, Karl, 198 ... (1)
Lindahl, Tomas (1)
James, Stefan (1)
Ten Berg, Jurrien M (1)
Scher, Howard I. (1)
de Boer, Hugo (1)
Miller, Kurt (1)
Tombal, Bertrand (1)
Samuelsson, Göran, 1 ... (1)
Wingsle, Gunnar (1)
Pansieri, Jonathan (1)
Morozova-Roche, Ludm ... (1)
Angiolillo, Dominick ... (1)
Iashchishyn, Igor (1)
Arias, Carolina (1)
Obudulu, Ogonna (1)
Zhao, Xiaoling (1)
Ansolia, Preeti (1)
Zhang, Xueyang (1)
visa färre...
Lärosäte
Stockholms universitet (6)
Umeå universitet (5)
Luleå tekniska universitet (5)
Karolinska Institutet (5)
Uppsala universitet (4)
Lunds universitet (3)
visa fler...
Göteborgs universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (21)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (13)
Medicin och hälsovetenskap (5)
Teknik (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy