SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pausata Francesco S. R.) "

Sökning: WFRF:(Pausata Francesco S. R.)

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jasechko, S., et al. (författare)
  • Late-glacial to late-Holocene shifts in global precipitation delta O-18
  • 2015
  • Ingår i: Climate of the Past. - : Copernicus GmbH. - 1814-9324 .- 1814-9332. ; 11:10, s. 1375-1393
  • Tidskriftsartikel (refereegranskat)abstract
    • Reconstructions of Quaternary climate are often based on the isotopic content of paleo-precipitation preserved in proxy records. While many paleo-precipitation isotope records are available, few studies have synthesized these dispersed records to explore spatial patterns of late-glacial precipitation delta O-18. Here we present a synthesis of 86 globally distributed groundwater (n = 59), cave calcite (n = 15) and ice core (n = 12) isotope records spanning the late-glacial (defined as similar to 50 000 to similar to 20 000 years ago) to the late-Holocene (within the past similar to 5000 years). We show that precipitation delta O-18 changes from the late-glacial to the late-Holocene range from -7.1% (delta O-18(late-Holocene) > delta O-18(late-glacial)) to + 1.7% (delta O-18(late-glacial) > delta O-18(late-Holocene)), with the majority (77 %) of records having lower late-glacial delta O-18 than late-Holocene delta O-18 values. High-magnitude, negative precipitation delta O-18 shifts are common at high latitudes, high altitudes and continental interiors (delta O-18(late-Holocene) > delta O-18(late-glacial) by more than 3 %). Conversely, low-magnitude, positive precipitation delta O-18 shifts are concentrated along tropical and subtropical coasts (delta O-18(late-glacial) > delta O-18(late-Holocene) by less than 2 %). Broad, global patterns of late-glacial to late-Holocene precipitation delta O-18 shifts suggest that stronger-than-modern isotopic distillation of air masses prevailed during the late-glacial, likely impacted by larger global temperature differences between the tropics and the poles. Further, to test how well general circulation models reproduce global precipitation delta O-18 shifts, we compiled simulated precipitation delta O-18 shifts from five isotope-enabled general circulation models simulated under recent and last glacial maximum climate states. Climate simulations generally show better intermodel and model-measurement agreement in temperate regions than in the tropics, highlighting a need for further research to better understand how inter-model spread in convective rainout, seawater delta O-18 and glacial topography parameterizations impact simulated precipitation delta O-18. Future research on paleo-precipitation delta O-18 records can use the global maps of measured and simulated late-glacial precipitation isotope compositions to target and prioritize field sites.
  •  
2.
  • Muschitiello, Francesco, et al. (författare)
  • Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (similar to 13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snow-pack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.
  •  
3.
  • Muschitiello, Francesco, et al. (författare)
  • Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Sources and timing of freshwater forcing relative to hydroclimate shifts recorded in Greenland ice cores at the onset of Younger Dryas, similar to 12,800 years ago, remain speculative. Here we show that progressive Fennoscandian Ice Sheet (FIS) melting 13,100-12,880 years ago generates a hydroclimate dipole with drier-colder conditions in Northern Europe and wetter-warmer conditions in Greenland. FIS melting culminates 12,880 years ago synchronously with the start of Greenland Stadial 1 and a large-scale hydroclimate transition lasting similar to 180 years. Transient climate model simulations forced with FIS freshwater reproduce the initial hydroclimate dipole through sea-ice feedbacks in the Nordic Seas. The transition is attributed to the export of excess sea ice to the subpolar North Atlantic and a subsequent southward shift of the westerly winds. We suggest that North Atlantic hydroclimate sensitivity to FIS freshwater can explain the pace and sign of shifts recorded in Greenland at the climate transition into the Younger Dryas.
  •  
4.
  • Pausata, Francesco S. R., et al. (författare)
  • ENSO response to high-latitude volcanic eruptions in the Northern Hemisphere : The role of the initial conditions
  • 2016
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 43:16, s. 8694-8702
  • Tidskriftsartikel (refereegranskat)abstract
    • A large ensemble of Earth System Model simulations is analyzed to show that high-latitude Northern Hemisphere eruptions give rise to El Nino-like anomalies in the winter following the eruption, the amplitude of which depends on the state of the tropical Pacific at the time of the eruption. The El Nino-like anomalies are almost three times larger when the eruption occurs during an incipient La Nina or during a neutral state compared to an incipient El Nino. The differential response results from stronger atmosphere-ocean coupling and extra-tropical feedbacks during an incipient La Nina compared to El Nino. Differences in the response continue through the second and third years following the eruption. When the eruption happens in a year of an incipient El Nino, a large cold (La Nina-like) anomaly develops in year 2; if the eruption occurs in a year of an incipient La Nina, no anomalies are simulated in year 2 and a La Nina-like response appears in year 3. After the El Nino-like anomaly in the first winter, the overall tendency of ENSO in the following 2years is toward a La Nina state. Our results highlight the high sensitivity of tropical Pacific dynamics under volcanic forcing to the ENSO initial state and lay the groundwork for improved predictions of the global climatic response to high-latitude volcanic eruptions.
  •  
5.
  • Pausata, Francesco S. R., et al. (författare)
  • Greening of the Sahara suppressed ENSO activity during the mid-Holocene
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of the El Nino-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.
  •  
6.
  • Pausata, Francesco S. R., et al. (författare)
  • Impacts of high-latitude volcanic eruptions on ENSO and AMOC
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 112:45, s. 13784-13788
  • Tidskriftsartikel (refereegranskat)abstract
    • Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Nino-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Nino-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Nino-Southern Oscillation (ENSO).
  •  
7.
  • Pausata, Francesco S. R., et al. (författare)
  • ITCZ shift and extratropical teleconnections drive ENSO response to volcanic eruptions
  • 2020
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 6:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms through which volcanic eruptions affect the El Nino-Southern Oscillation (ENSO) state are still controversial. Previous studies have invoked direct radiative forcing, an ocean dynamical thermostat (ODT) mechanism, and shifts of the Intertropical Convergence Zone (ITCZ), among others, to explain the ENSO response to tropical eruptions. Here, these mechanisms are tested using ensemble simulations with an Earth system model in which volcanic aerosols from a Tambora-like eruption are confined either in the Northern or the Southern Hemisphere. We show that the primary drivers of the ENSO response are the shifts of the ITCZ together with extratropical circulation changes, which affect the tropics; the ODT mechanism does not operate in our simulations. Our study highlights the importance of initial conditions in the ENSO response to tropical volcanic eruptions and provides explanations for the predominance of posteruption El Nino events and for the occasional posteruption La Nina in observations and reconstructions.
  •  
8.
  • Pausata, Francesco S. R., et al. (författare)
  • Revisiting the Mechanisms of ENSO Response to Tropical Volcanic Eruptions
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratospheric volcanic aerosol can have major impacts on global climate. Despite a consensus among studies on an El Niño-like response in the first or second post-eruption year, the mechanisms that trigger a change in the state of El Niño-Southern Oscillation (ENSO) following volcanic eruptions are still debated. Here, we shed light on the processes that govern the ENSO response to tropical volcanic eruptions through a series of sensitivity experiments with an Earth System Model where a uniform stratospheric volcanic aerosol loading is imposed over different parts of the tropics. Three tropical mechanisms are tested: the “ocean dynamical thermostat” (ODT); the cooling of the Maritime Continent; and the cooling of tropical northern Africa (NAFR). We find that the NAFR mechanism plays the largest role, while the ODT mechanism is absent in our simulations as La Niña-like rather than El-Niño-like conditions develop following a uniform radiative forcing over the equatorial Pacific.
  •  
9.
  • Winter, Amos, et al. (författare)
  • Initiation of a stable convective hydroclimatic regime in Central America circa 9000 years BP
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Holocene hydroclimate records show rainfall changes that vary with local orbital insolation. However, some tropical regions display rainfall evolution that differs from gradual precessional pacing, suggesting that direct rainfall forcing effects were predominantly driven by sea-surface temperature thresholds or inter-ocean temperature gradients. Here we present a 12,000 yr continuous U/Th-dated precipitation record from a Guatemalan speleothem showing that Central American rainfall increased within a 2000 yr period from a persistently dry state to an active convective regime at 9000 yr BP and has remained strong thereafter. Our data suggest that the Holocene evolution of Central American rainfall was driven by exceeding a temperature threshold in the nearby tropical oceans. The sensitivity of this region to slow changes in radiative forcing is thus strongly mediated by internal dynamics acting on much faster time scales.
  •  
10.
  • Zanchettin, Davide, et al. (författare)
  • The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6
  • 2016
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 9:8, s. 2701-2719
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy