SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pausch Johanna) "

Sökning: WFRF:(Pausch Johanna)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kumar, Amit, et al. (författare)
  • Root trait plasticity and plant nutrient acquisition in phosphorus limited soil
  • 2019
  • Ingår i: Journal of Plant Nutrition and Soil Science. - : Wiley. - 1436-8730 .- 1522-2624. ; 182:6, s. 945-952
  • Tidskriftsartikel (refereegranskat)abstract
    • To overcome soil nutrient limitation, many plants have developed complex nutrient acquisition strategies including altering root morphology, root hair formation or colonization by arbuscular mycorrhizal fungi (AMF). The interactions of these strategies and their plasticity are, however, affected by soil nutrient status throughout plant growth. Such plasticity is decisive for plant phosphorus (P) acquisition in P‐limited soils. We investigated the P acquisition strategies and their plasticity of two maize genotypes characterized by the presence or absence of root hairs. We hypothesized that in the absence of root hairs plant growth is facilitated by traits with complementary functions, e.g., by higher root mycorrhizal colonization. This dependence on complementary traits will decrease in P fertilized soils. At early growth stages, root hairs are of little benefit for nutrient uptake. Regardless of the presence or absence of root hairs, plants produced average root biomass of 0.14 g per plant and exhibited 23% root mycorrhizal colonization. At later growth stages of maize, contrasting mechanisms with functional complementarity explained similar plant biomass production under P limitation: the presence of root hairs versus higher root mycorrhizal colonization (67%) favored by increased fine root diameter in absence of root hairs. P fertilization decreased the dependence of plant on specific root traits for nutrient acquisition. Through root trait plasticity, plants can minimize trade‐offs for developing and maintaining functional traits, while increasing the benefit in terms of nutrient acquisition and plant growth. The present study highlights the plasticity of functional root traits for efficient nutrient acquisition strategies in agricultural systems with low nutrient availability.
  •  
2.
  • Liu, Qiong, et al. (författare)
  • Vertical and horizontal shifts in the microbial community structure of paddy soil under long-term fertilization regimes
  • 2022
  • Ingår i: Applied Soil Ecology. - : Elsevier BV. - 0929-1393. ; 169
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge remains limited on how the structure of microbial community in paddy soils changes in relation to different types of fertilizers with same amount of nutrients. Thus, here, soil samples were collected at 0–10, 10–20, 20–30, and 30–40 cm depths from a paddy field subjected to four long-term fertilization treatments (no fertilization, mineral fertilization, mineral fertilization combined with rice straw, and chicken manure) and analyzed for microbial biomass and community composition. In unfertilized soils, microbial biomass decreased from 0 to 40 cm (with actinomycetes < gram-positive (G+) bacteria < gram-negative (G? ) bacteria < fungi). This ordering was retained after fertilization, but the decline with depth was less pronounced. Both mineral and mineral plus organic fertilization increased the biomass of G+ bacteria compared to G? bacteria (22.7–56.2% increase) and actinomycetes (14.8–52.5% increase). Thus, over the long term, G+ bacteria benefited the most from mineral fertilizer than the other microbial groups. The partial replacement of mineral fertilizer with manure primarily enhanced the abundance of G+ bacteria at 0–30 cm soil depth, whereas replacement with straw enhanced the abundance of fungi at 10–20 cm soil depth. Our findings demonstrate that the structure of the microbial community is strongly impacted by long-term fertilization, independent of fertilizer type.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy