SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pavelka Marian) "

Sökning: WFRF:(Pavelka Marian)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acosta, Manuel, et al. (författare)
  • Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe - from boreal to alpine forest
  • 2013
  • Ingår i: Geoderma. - : Elsevier BV. - 0016-7061. ; 192, s. 295-303
  • Tidskriftsartikel (refereegranskat)abstract
    • Extensive measurements of soil surface (including vegetation cover) CO2 efflux were carried out on 80 positions at four different forest sites (Sweden, Germany, Czech Republic and Italy) using a closed dynamic chamber technique. The period of measurement was 4-5 consecutive days per site. Two approaches were used to analyze the measured data, the Q(10) parameter and the Arrhenius relationship. Basic environmental factors such as soil temperature and moisture were measured. All the four investigated sites showed a positive dependence of the soil surface CO2 efflux on soil temperature. The four datasets generally resulted in good agreement (up to 93%) between the approaches and residual analysis showed no significant difference between approaches (less than 8%). The Q(10) ranged between 2.0 and 23 among the sites. The highest spatial variation of the soil surface CO2 efflux at 10 degrees C (expressed by the coefficient of variation CV) ranged from 30 to 65% between sites. (C) 2012 Elsevier B.V. All rights reserved.
  •  
2.
  • Haeni, M., et al. (författare)
  • Winter respiratory C losses provide explanatory power for net ecosystem productivity
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:1, s. 243-260
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate predictions of net ecosystem productivity (NEPc) of forest ecosystems are essential for climate change decisions and requirements in the context of national forest growth and greenhouse gas inventories. However, drivers and underlying mechanisms determining NEPc (e.g., climate and nutrients) are not entirely understood yet, particularly when considering the influence of past periods. Here we explored the explanatory power of the compensation day (cDOY)-defined as the day of year when winter net carbon losses are compensated by spring assimilation-for NEPc in 26 forests in Europe, North America, and Australia, using different NEPc integration methods. We found cDOY to be a particularly powerful predictor for NEPc of temperate evergreen needleleaf forests (R2=0.58) and deciduous broadleaf forests (R2=0.68). In general, the latest cDOY correlated with the lowest NEPc. The explanatory power of cDOY depended on the integration method for NEPc, forest type, and whether the site had a distinct winter net respiratory carbon loss or not. The integration methods starting in autumn led to better predictions of NEPc from cDOY then the classical calendar method starting 1 January. Limited explanatory power of cDOY for NEPc was found for warmer sites with no distinct winter respiratory loss period. Our findings highlight the importance of the influence of winter processes and the delayed responses of previous seasons' climatic conditions on current year's NEPc. Such carry-over effects may contain information from climatic conditions, carbon storage levels, and hydraulic traits of several years back in time.
  •  
3.
  • Heiskanen, Jouni, et al. (författare)
  • The Integrated Carbon Observation System in Europe
  • 2022
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 103:3, s. 855-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Since 1750, land-use change and fossil fuel combustion has led to a 46% increase in the atmospheric carbon dioxide (CO2) concentrations, causing global warming with substantial societal consequences. The Paris Agreement aims to limit global temperature increases to well below 2C above preindustrial levels. Increasing levels of CO2 and other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide (N2O), in the atmosphere are the primary cause of climate change. Approximately half of the carbon emissions to the atmosphere are sequestered by ocean and land sinks, leading to ocean acidification but also slowing the rate of global warming. However, there are significant uncertainties in the future global warming scenarios due to uncertainties in the size, nature, and stability of these sinks. Quantifying and monitoring the size and timing of natural sinks and the impact of climate change on ecosystems are important information to guide policy-makers' decisions and strategies on reductions in emissions. Continuous, long-term observations are required to quantify GHG emissions, sinks, and their impacts on Earth systems. The Integrated Carbon Observation System (ICOS) was designed as the European in situ observation and information system to support science and society in their efforts to mitigate climate change. It provides standardized and open data currently from over 140 measurement stations across 12 European countries. The stations observe GHG concentrations in the atmosphere and carbon and GHG fluxes between the atmosphere, land surface, and the oceans. This article describes how ICOS fulfills its mission to harmonize these observations, ensure the related long-term financial commitments, provide easy access to well-documented and reproducible high-quality data and related protocols and tools for scientific studies, and deliver information and GHG-related products to stakeholders in society and policy.
  •  
4.
  • López-Ballesteros, Ana, et al. (författare)
  • Towards a feasible and representative pan-African research infrastructure network for GHG observations
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • There is currently a lack of representative, systematic and harmonised greenhouse gas (GHG) observations covering the variety of natural and human-altered biomes that occur in Africa. This impedes the long-term assessment of the drivers of climate change, in addition to their impacts and feedback loops at the continental scale, but also limits our understanding of the contribution of the African continent to the global carbon (C) cycle. Given the current and projected transformation of socio-economic conditions in Africa (i.e. the increasing trend of urbanisation and population growth) and the adverse impacts of climate change, the development of a GHG research infrastructure (RI) is needed to support the design of suitable mitigation and adaptation strategies required to assure food, fuel, nutrition and economic security for the African population. This paper presents the initial results of the EU-African SEACRIFOG project, which aims to design a GHG observation RI for Africa. The first stages of this project included the identification and engagement of key stakeholders, the definition of the conceptual monitoring framework and an assessment of existing infrastructural capacity. Feedback from stakeholder sectors was obtained through three Stakeholder Consultation Workshops held in Kenya, Ghana and Zambia. Main concerns identified were data quality and accessibility, the need for capacity building and networking among the scientific community, and adaptation to climate change, which was confirmed to be a priority for Africa. This feedback in addition to input from experts in the atmospheric, terrestrial and oceanic thematic areas, facilitated the selection of a set of 'essential variables' that need to be measured in the future environmental RI. An inventory of 47 existing and planned networks across the continent allowed for an assessment of the current RIs needs and gaps in Africa. Overall, the development of a harmonised and standardised pan-African RI will serve to address the continent's primary societal and scientific challenges through a potential cross-domain synergy among existing and planned networks at regional, continental and global scales.
  •  
5.
  • Montagnani, Leonardo, et al. (författare)
  • A new mass conservation approach to the study of CO2 advection in an alpine forest
  • 2009
  • Ingår i: Journal of Geophysical Research. - 2156-2202. ; 114
  • Tidskriftsartikel (refereegranskat)abstract
    • A new method is proposed for the computation of CO2 Net Ecosystem Exchange (NEE) and its components in a forest ecosystem. Advective flux is estimated by taking into account the air mass conservation principle. For this purpose, wind and dry air density values on the surface of the control volume are first corrected and then the advective flux is estimated on the surface of the control volume. Turbulent flux is also computed along the surface of the control volume while storage flux is computed inside the volume. Additional characteristics of this method are that incompressibility of the mean flow is not assumed a priori, and that vertical and horizontal advective fluxes are not treated separately, but their sum is estimated directly. The methodology is applied to experimental data collected with a three-dimensional scheme at the alpine site of Renon during the Advex project (July 2005). The advection flux was found to be prevailing positive at night and negative during the day, as was found in previous studies on advection for the same site, but showed a lower scatter in half-hour calculated values. We tested the effect of its summation on turbulent and storage fluxes to produce half-hourly values of NEE. Nighttime NEE values were used in functional relations with soil temperature, daytime values with PPFD. The effect of addition of the advection component was an increase in the values of parameters indicating ecosystem respiration, quantum yield, and photosynthetic capacity. The coefficient of correlation between NEE and environmental drivers increased.
  •  
6.
  • Papale, Dario, et al. (författare)
  • Standards and Open Access are the ICOS Pillars Reply to "Comments on 'The Integrated Carbon Observation System in Europe'"
  • 2023
  • Ingår i: Bulletin of the American Meteorological Society. - 0003-0007. ; 104:12, s. 953-955
  • Tidskriftsartikel (refereegranskat)abstract
    • In his comment (Kowalski 2023) on our recent publication (Heiskanen et al. 2022) where we present the Integrated Carbon Observation System (ICOS) research infrastructure, Andrew Kowalski introduces three important and, in our opinion, different potential issues in the definition, collection, and availability of field measurements made by the ICOS network, and he proposes possible solutions to these issues.
  •  
7.
  • Rebmann, Corinna, et al. (författare)
  • ICOS eddy covariance flux-station site setup : A review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32:4, s. 471-494
  • Forskningsöversikt (refereegranskat)abstract
    • The Integrated Carbon Observation System Research Infrastructure aims to provide long-Term, continuous observations of sources and sinks of greenhouse gases such as carbon dioxide, methane, nitrous oxide, and water vapour. At ICOS ecosystem stations, the principal technique for measurements of ecosystem-Atmosphere exchange of GHGs is the eddy-covariance technique. The establishment and setup of an eddy-covariance tower have to be carefully reasoned to ensure high quality flux measurements being representative of the investigated ecosystem and comparable to measurements at other stations. To fulfill the requirements needed for flux determination with the eddy-covariance technique, variations in GHG concentrations have to be measured at high frequency, simultaneously with the wind velocity, in order to fully capture turbulent fluctuations. This requires the use of high-frequency gas analysers and ultrasonic anemometers. In addition, to analyse flux data with respect to environmental conditions but also to enable corrections in the post-processing procedures, it is necessary to measure additional abiotic variables in close vicinity to the flux measurements. Here we describe the standards the ICOS ecosystem station network has adopted for GHG flux measurements with respect to the setup of instrumentation on towers to maximize measurement precision and accuracy while allowing for flexibility in order to observe specific ecosystem features.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy