SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pawlowska Julia) "

Sökning: WFRF:(Pawlowska Julia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abarenkov, Kessy, et al. (författare)
  • The UNITE database for molecular identification and taxonomic communication of fungi and other eukaryotes: sequences, taxa and classifications reconsidered
  • 2024
  • Ingår i: Nucleic Acids Research. - 0305-1048 .- 1362-4962. ; 52:D1, s. D791-D797
  • Tidskriftsartikel (refereegranskat)abstract
    • UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into similar to 2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms. Graphical Abstract
  •  
2.
  • Gorczak, Michał, et al. (författare)
  • 18th congress of european mycologists bioblitz 2019 – naturalists contribute to the knowledge of mycobiota and lichenobiota of białowieża primeval forest
  • 2020
  • Ingår i: Acta Mycologica. - : Polish Botanical Society. - 0001-625X .- 2353-074X. ; 55:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 561 records of 233 species of fungi are reported from the Polish part of Białowieża Forest as a result of a short-term inventory that was conducted during the 18th Congress of European Mycologists (September 18–29, 2019). Four species new to Poland (Bryocentria brongniartii, Tremella coppinsii, T. hypocenomycis, and Zevadia peroccidentalis), and eight species new to Białowieża Primeval Forest (Hypomyces chrysostomus, Hypomyces rosellus, Lachnellula resinaria, Peniophora lycii, Phellinus viticola, Phlebia subochracea, Pronectria anisospora, and Typhula quisquiliaris) were recorded.
  •  
3.
  • Hyde, Kevin D., et al. (författare)
  • One stop shop: backbones trees for important phytopathogenic genera: I (2014)
  • 2014
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 21-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Many fungi are pathogenic on plants and cause significant damage in agriculture and forestry. They are also part of the natural ecosystem and may play a role in regulating plant numbers/density. Morphological identification and analysis of plant pathogenic fungi, while important, is often hampered by the scarcity of discriminatory taxonomic characters and the endophytic or inconspicuous nature of these fungi. Molecular (DNA sequence) data for plant pathogenic fungi have emerged as key information for diagnostic and classification studies, although hampered in part by non-standard laboratory practices and analytical methods. To facilitate current and future research, this study provides phylogenetic synopses for 25 groups of plant pathogenic fungi in the Ascomycota, Basidiomycota, Mucormycotina (Fungi), and Oomycota, using recent molecular data, up-to-date names, and the latest taxonomic insights. Lineage-specific laboratory protocols together with advice on their application, as well as general observations, are also provided. We hope to maintain updated backbone trees of these fungal lineages over time and to publish them jointly as new data emerge. Researchers of plant pathogenic fungi not covered by the present study are invited to join this future effort. Bipolaris, Botryosphaeriaceae, Botryosphaeria, Botrytis, Choanephora, Colletotrichum, Curvularia, Diaporthe, Diplodia, Dothiorella, Fusarium, Gilbertella, Lasiodiplodia, Mucor, Neofusicoccum, Pestalotiopsis, Phyllosticta, Phytophthora, Puccinia, Pyrenophora, Pythium, Rhizopus, Stagonosporopsis, Ustilago and Verticillium are dealt with in this paper.
  •  
4.
  • Nilsson, R. Henrik, 1976, et al. (författare)
  • Improving ITS sequence data for identification of plant pathogenic fungi
  • 2014
  • Ingår i: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 11-19
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.
  •  
5.
  • Zamora, Juan Carlos, et al. (författare)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • Ingår i: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (5)
Typ av innehåll
refereegranskat (5)
Författare/redaktör
Pawlowska, Julia (5)
Kõljalg, Urmas (3)
Nilsson, R. Henrik, ... (3)
Abarenkov, Kessy (2)
Larsson, Ellen, 1961 (2)
Saar, Irja (2)
visa fler...
Larsson, Karl-Henrik ... (2)
Lindahl, Björn (2)
Niskanen, Tuula (2)
Schigel, Dmitry (2)
Suija, Ave (2)
Tedersoo, Leho (2)
Antonelli, Alexandre ... (1)
Bahram, Mohammad (1)
Bengtsson-Palme, Joh ... (1)
Kristiansson, Erik, ... (1)
Martinsson, Svante, ... (1)
Svantesson, Sten (1)
Unterseher, Martin (1)
Taylor, Andy F.S. (1)
Põldmaa, Kadri (1)
Ghobad-Nejhad, Masoo ... (1)
Sánchez-García, Mari ... (1)
Ryberg, Martin (1)
May, Tom W. (1)
Froslev, Tobias Guld ... (1)
Truong, Camille (1)
Vu, Duong (1)
Hosoya, Tsuyoshi (1)
Piirmann, Timo (1)
Ivanov, Filipp (1)
Zirk, Allan (1)
Cheeke, Tanya E. (1)
Ishigami, Yui (1)
Jansson, Arnold Tobi ... (1)
Mikryukov, Vladimir (1)
Oono, Ryoko (1)
Ossandon, Francisco ... (1)
Pauperio, Joana (1)
Peterson, M. (1)
Jeppesen, T. S. (1)
Miller, J. T. (1)
Liimatainen, Kare (1)
Peintner, Ursula (1)
Borovicka, Jan (1)
Svensson, Måns (1)
Nagy, István (1)
Tibell, Leif (1)
Thor, Göran (1)
Ahti, Teuvo (1)
visa färre...
Lärosäte
Göteborgs universitet (4)
Sveriges Lantbruksuniversitet (3)
Uppsala universitet (2)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Naturhistoriska riksmuseet (2)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Medicin och hälsovetenskap (2)
Lantbruksvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy