SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Paz Vinas Ivan) "

Sökning: WFRF:(Paz Vinas Ivan)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Castagne, Paul, et al. (författare)
  • Patterns of genetic variation in native and non-native populations of European catfish Silurus glanis across Europe
  • 2023
  • Ingår i: Biodiversity and Conservation. - : Springer. - 0960-3115 .- 1572-9710. ; 32, s. 2127-2147
  • Tidskriftsartikel (refereegranskat)abstract
    • Biological invasions are a major component of global change worldwide. But paradoxically, an invasive species might also have threatened populations within its native range. Designing efficient management policies is needed to prevent and mitigate range expansions of invasive alien species (IAS) in non-native areas, while protecting them within their native range. Characterizing genetic variation patterns for IAS populations and deciphering the links between their native and introduced populations is helpful to (i) assess the genetic state of both native and non-native populations, (ii) reveal potential invasion pathways, (iii) define IAS management strategies in invaded areas, and (iv) identify native populations requiring conservation measures. The European catfish (Silurus glanis) is the largest European predatory fish. Introduced since the seventies from Eastern to Western Europe, it has colonized many waterbodies. Yet, little is known about the genetic status of non-native populations and the invasion pathways used by the species. Besides, some native populations are threatened, requiring conservation actions. Here, we describe current patterns of genetic variability of native and non-native S. glanis populations across Europe. Using microsatellite markers, we first assessed genetic variation within and between native and non-native populations. Second, we performed genetic clustering analyses to determine the genetic structure of multiple catfish populations across Europe and highlight their potential links. We revealed that native populations are more genetically diverse than non-native populations, and highlight complex introduction pathways involving several independent sources of introduction, which likely explain the invasion success of this large predatory fish across western Europe.
  •  
2.
  • Hoban, Sean, et al. (författare)
  • Genetic diversity goals and targets have improved, but remain insufficient for clear implementation of the post-2020 global biodiversity framework
  • 2023
  • Ingår i: Conservation Genetics. - : Springer Science and Business Media LLC. - 1566-0621 .- 1572-9737. ; 24:2, s. 181-191
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity among and within populations of all species is necessary for people and nature to survive and thrive in a changing world. Over the past three years, commitments for conserving genetic diversity have become more ambitious and specific under the Convention on Biological Diversity’s (CBD) draft post-2020 global biodiversity framework (GBF). This Perspective article comments on how goals and targets of the GBF have evolved, the improvements that are still needed, lessons learned from this process, and connections between goals and targets and the actions and reporting that will be needed to maintain, protect, manage and monitor genetic diversity. It is possible and necessary that the GBF strives to maintain genetic diversity within and among populations of all species, to restore genetic connectivity, and to develop national genetic conservation strategies, and to report on these using proposed, feasible indicators.
  •  
3.
  • Hoban, Sean, et al. (författare)
  • Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved
  • 2020
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 248
  • Tidskriftsartikel (refereegranskat)abstract
    • The 196 parties to the Convention on Biological Diversity (CBD) will soon agree to a post-2020 global framework for conserving the three elements of biodiversity (genetic, species, and ecosystem diversity) while ensuring sustainable development and benefit sharing. As the most significant global conservation policy mechanism, the new CBD framework has far-reaching consequences- it will guide conservation actions and reporting for each member country until 2050. In previous CBD strategies, as well as other major conservation policy mechanisms, targets and indicators for genetic diversity (variation at the DNA level within species, which facilitates species adaptation and ecosystem function) were undeveloped and focused on species of agricultural relevance. We assert that, to meet global conservation goals, genetic diversity within all species, not just domesticated species and their wild relatives, must be conserved and monitored using appropriate metrics. Building on suggestions in a recent Letter in Science (Laikre et al., 2020) we expand argumentation for three new, pragmatic genetic indicators and modifications to two current indicators for maintaining genetic diversity and adaptive capacity of all species, and provide guidance on their practical use. The indicators are: 1) the number of populations with effective population size above versus below 500, 2) the proportion of populations maintained within species, 3) the number of species and populations in which genetic diversity is monitored using DNA-based methods. We also present and discuss Goals and Action Targets for post-2020 biodiversity conservation which are connected to these indicators and underlying data. These pragmatic indicators and goals have utility beyond the CBD; they should benefit conservation and monitoring of genetic diversity via national and global policy for decades to come.
  •  
4.
  • Hoban, Sean, et al. (författare)
  • Monitoring status and trends in genetic diversity for the Convention on Biological Diversity : An ongoing assessment of genetic indicators in nine countries
  • 2023
  • Ingår i: Conservation Letters. - 1755-263X. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent scientific evidence shows that genetic diversity must be maintained, managed, and monitored to protect biodiversity and nature's contributions to people. Three genetic diversity indicators, two of which do not require DNA-based assessment, have been proposed for reporting to the Convention on Biological Diversity and other conservation and policy initiatives. These indicators allow an approximation of the status and trends of genetic diversity to inform policy, using existing demographic and geographic information. Application of these indicators has been initiated and here we describe ongoing efforts in calculating these indicators with examples. We specifically describe a project underway to apply these indicators in nine countries, provide example calculations, address concerns of policy makers and implementation challenges, and describe a roadmap for further development and deployment, incorporating feedback from the broader community. We also present guidance documents and data collection tools for calculating indicators. We demonstrate that Parties can successfully and cost-effectively report these genetic diversity indicators with existing biodiversity observation data, and, in doing so, better conserve the Earth's biodiversity. 
  •  
5.
  • Hoban, Sean, et al. (författare)
  • Too simple, too complex, or just right? Advantages, challenges, and guidance for indicators of genetic diversity
  • 2024
  • Ingår i: BioScience. - 0006-3568 .- 1525-3244.
  • Tidskriftsartikel (refereegranskat)abstract
    • Measuring genetic diversity of wild species using DNA-based data remains resource intensive and time consuming for nearly all species. However, genetic assessments are needed for global conservation commitments, including the Convention on Biological Diversity, and for governments and managers to evaluate conservation progress, as well as prioritizing species and populations to preserve and recover genetic diversity (e.g., via genetic rescue). Recently, indicators were developed for tracking and reporting genetic diversity status and trends for hundreds of species. The indicators quantify two simple proxies of within-population and among-population genetic diversity and adaptive potential: small effective population size (Ne < 500) and the loss of genetically distinct populations. The indicators must balance scientific credibility, practicality, and simplicity. In the present article, we summarize the advantages of these pragmatic indicators, address critiques by scientists for simplifying assumptions and by policymakers for complexity, and propose potential solutions and next steps. We aim to support practitioners putting indicators into policy, action, legislation, and reporting.
  •  
6.
  • Pearman, Peter B., et al. (författare)
  • Monitoring of species' genetic diversity in Europe varies greatly and overlooks potential climate change impacts
  • 2024
  • Ingår i: Nature Ecology & Evolution. - : Springer Nature. - 2397-334X. ; 8:2, s. 267-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic monitoring of populations currently attracts interest in the context of the Convention on Biological Diversity but needs long-term planning and investments. However, genetic diversity has been largely neglected in biodiversity monitoring, and when addressed, it is treated separately, detached from other conservation issues, such as habitat alteration due to climate change. We report an accounting of efforts to monitor population genetic diversity in Europe (genetic monitoring effort, GME), the evaluation of which can help guide future capacity building and collaboration towards areas most in need of expanded monitoring. Overlaying GME with areas where the ranges of selected species of conservation interest approach current and future climate niche limits helps identify whether GME coincides with anticipated climate change effects on biodiversity. Our analysis suggests that country area, financial resources and conservation policy influence GME, high values of which only partially match species' joint patterns of limits to suitable climatic conditions. Populations at trailing climatic niche margins probably hold genetic diversity that is important for adaptation to changing climate. Our results illuminate the need in Europe for expanded investment in genetic monitoring across climate gradients occupied by focal species, a need arguably greatest in southeastern European countries. This need could be met in part by expanding the European Union's Birds and Habitats Directives to fully address the conservation and monitoring of genetic diversity. Comparing data on genetic monitoring efforts across Europe with the distributions of areas at species' climatic niche margins, the authors show that monitoring efforts should be expanded to populations at trailing niche margins to include genetic variation that may prove important for adaptation to ongoing climate warming.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy