SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pea A) "

Sökning: WFRF:(Pea A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Sartelli, Massimo, et al. (författare)
  • Ten golden rules for optimal antibiotic use in hospital settings: the WARNING call to action
  • 2023
  • Ingår i: WORLD JOURNAL OF EMERGENCY SURGERY. - 1749-7922. ; 18:1
  • Forskningsöversikt (refereegranskat)abstract
    • Antibiotics are recognized widely for their benefits when used appropriately. However, they are often used inappropriately despite the importance of responsible use within good clinical practice. Effective antibiotic treatment is an essential component of universal healthcare, and it is a global responsibility to ensure appropriate use. Currently, pharmaceutical companies have little incentive to develop new antibiotics due to scientific, regulatory, and financial barriers, further emphasizing the importance of appropriate antibiotic use. To address this issue, the Global Alliance for Infections in Surgery established an international multidisciplinary task force of 295 experts from 115 countries with different backgrounds. The task force developed a position statement called WARNING (Worldwide Antimicrobial Resistance National/International Network Group) aimed at raising awareness of antimicrobial resistance and improving antibiotic prescribing practices worldwide. The statement outlined is 10 axioms, or "golden rules," for the appropriate use of antibiotics that all healthcare workers should consistently adhere in clinical practice.
  •  
6.
  • Cojutti, Pier Giorgio, et al. (författare)
  • Population Pharmacokinetic and Pharmacodynamic Analysis of Valganciclovir for Optimizing Preemptive Therapy of Cytomegalovirus Infections in Kidney Transplant Recipients
  • 2023
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 67:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model of valganciclovir for preemptive therapy of cytomegalovirus (CMV) infection in kidney transplant patients. A population PK/PD model was developed with Monolix. Ganciclovir concentrations and CMV viral loads were obtained retrospectively from kidney transplant patients receiving routine clinical care. Ten thousand Monte Carlo simulations were performed with the licensed dosages adjusted for renal function to assess the probability of attaining a viral load target of <= 290 and <= 137 IU/mL. Fifty-seven patients provided 343 ganciclovir concentrations and 328 CMV viral loads for PK/PD modeling. A one-compartment pharmacokinetic model coupled with an indirect viral turnover growth model with stimulation of viral degradation pharmacodynamic model was devised. Simulations showed that 1- and 2-log(10) reduction of CMV viral load mostly occurred between a median of 5 to 6 and 12 to 16 days, respectively. The licensed dosages achieved a probability of reaching the viral load target >= 90% at days 35 to 49 and 42 to 56 for the thresholds of <= 290 and <= 137 IU/mL, respectively. Simulations indicate that in patients with an estimated glomerular filtration rate of 10 to 24 mL/min/1.73m(2), a dose increase to 450 mg every 36 h may reduce time to optimal viral load target to days 42 and 49 from a previous time of 49 and 56 days for the thresholds of <= 290 and <= 137 IU/mL, respectively. Currently licensed dosages of valganciclovir for preemptive therapy of CMV infection may achieve a viral load reduction within the first 2 weeks, but treatment should continue for >= 35 days to ensure viral load suppression.
  •  
7.
  • Tängdén, Thomas, et al. (författare)
  • Valganciclovir Pharmacokinetics in Patients Receiving Oral Prophylaxis Following Kidney Transplantation and Model-Based Predictions of Optimal Dosing Regimens
  • 2018
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 57:11, s. 1399-1405
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectivesValganciclovir is used as oral prophylaxis for cytomegalovirus (CMV) infection in kidney transplant recipients. However, limited pharmacokinetic data exist to guide dosing in this patient group. This study aimed to describe the population pharmacokinetics of valganciclovir in a large sample of kidney transplant recipients and predict optimal dosing based on Monte Carlo simulations.MethodsTherapeutic drug monitoring (TDM) data from adult kidney transplant recipients who received valganciclovir prophylaxis during a 10-year study period were collected retrospectively. A non-parametric pharmacokinetic analysis and Monte Carlo simulations to determine the probabilities of reaching an area under the drug concentration-time curve (AUC) target of 40-50mgh/L with various dosing regimens at different levels of renal function were conducted using the Pmetrics package for R.ResultsThis study included 792 ganciclovir concentration measurements derived from 97 patients. A one-compartment oral absorption model best described the data. The final covariate model was as follows: CL(ganciclovir)=TVCLx(CLCR/51)(0.75), where CL is the clearance, TVCL is the typical value of ganciclovir clearance, creatinine clearance (CLCR) according to the Cockcroft-Gaultt equation and 51 is the mean CLCR determined in the study. In the simulations, the probability of reaching the targeted AUC was insufficient when using the recommended dosing regimens for prophylaxis, especially in patients with impaired renal function at CLCR<50mL/min.ConclusionsHigher doses of valganciclovir corrected to renal function are suggested for use as oral prophylaxis for CMV infection in kidney transplant recipients. Further study is required to establish TDM targets to ensure adequate drug concentrations while avoiding potentially toxic drug exposures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy