SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pedrosa Domellof Fatima) "

Sökning: WFRF:(Pedrosa Domellof Fatima)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Jing-Xia, et al. (författare)
  • Immunolocalisation of GQ1b and related gangliosides in human extraocular neuromuscular junctions and muscle spindles
  • 2009
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404 .- 1552-5783. ; 50:7, s. 3226-3232
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To examine the distribution of anti-GQ1b, -GT1a and -GD1b antibody binding in human extraocular muscles (EOMs), axial and limb muscles and muscle spindles and thereby test the hypothesis that their distinctive ganglioside composition provides the molecular basis for selective involvement of EOMs and muscle spindles in Miller Fisher syndrome.Methods: Muscle samples from adult human EOMs, vastus lateralis, biceps brachii, lumbrical, psoas and deep muscles of the neck were processed for immunohistochemistry, with monoclonal antibodies against ganglioside GQ1b, GT1a and GD1b. Neuromuscular junctions (NMJs) were detected by a-bungarotoxin binding and by acetycholinesterase reaction.Results: The vast majority of motor endplates of human EOMs richly bound anti-GQ1b, -GT1a, and -GD1b ganglioside antibodies. Anti-GQ1b, -GT1a, and -GD1b ganglioside antibody bindings to NMJs in human limb and axial muscle were very scarce but the nerve terminals inside muscle spindles and in direct contact with intrafusal fibers were labeled with anti- GQ1b, -GT1a and -GD1b ganglioside antibodies.Conclusions: The abundant and synaptic-specific binding of anti-GQ1b, -GT1a, and -GD1b ganglioside antibodies and the rich capillary supply in the human EOMs may partly explain the selective paralysis of these muscles in Miller Fisher syndrome.
  •  
2.
  • Malm, Christer, et al. (författare)
  • Evaluation of 2-D DIGE for skeletal muscle: Protocol and repeatability
  • 2008
  • Ingår i: The Scandinavian Journal of Clinical & Laboratory Investigation. - : Informa Healthcare. - 0036-5513 .- 1502-7686. ; 68:8, s. 793-800
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteomic analysis has the potential to yield vast amounts of data. The available proteomic methods have been hampered by methodological errors in quantification due to large gel-to-gel variations. The inclusion of an internal standard greatly reduces this variation, and therefore the purpose of this investigation was: 1) to develop a sample preparation protocol for human skeletal muscle for two-dimensional differentiated gel electrophoresis (DIGE) and 2) to investigate the repeatability of one particular system, the Ettan™ DIGE. To test repeatability, nine aliquots from the same homogenate were labelled with three different CyDye™ dyes (Cy2, Cy3, Cy5). Samples were run on 1824 cm gels, scanned with a Typhoon™ 9410 laser scanner and analysed in the DeCyder™ software. When selecting spots appearing only in triplicate (n = 1314), the mean error was 1.7 % (SD: 10.5 %; 95 % CI: 1.1-2.4 %). When setting the significance level to 99 %, no false-positive changes in protein volume ratios were detected. In the protocol presented here, only 0.5 mg tissue was used and separation of >2500 distinct protein spots in the pH range 3-11 and MW 10-200 kDa. Changes in protein abundance of <20 % could be detected. The method is especially useful when comparing muscle proteins between different conditions; for example, healthy and diseased tissue, before and after treatment or different exercise protocols.
  •  
3.
  • McLoon, Linda K., et al. (författare)
  • A continuum of myofibers in adult rabbit extraocular muscle : force, shortening velocity, and patterns of myosin heavy chain colocalization
  • 2011
  • Ingår i: Journal of applied physiology. - Bethesda, Md. : American Physiological Society. - 8750-7587 .- 1522-1601. ; 111:4, s. 1178-1189
  • Tidskriftsartikel (refereegranskat)abstract
    • Extraocular muscle (EOM) myofibers do not fit the traditional fiber typing classifications normally used in noncranial skeletal muscle, in part, due to the complexity of their individual myofibers. With single skinned myofibers isolated from rectus muscles of normal adult rabbits, force and shortening velocity were determined for 220 fibers. Each fiber was examined for myosin heavy chain (MyHC) isoform composition by densitometric analysis of electrophoresis gels. Rectus muscle serial sections were examined for coexpression of eight MyHC isoforms. A continuum was seen in single myofiber shortening velocities as well as force generation, both in absolute force (g) and specific tension (kN/m(2)). Shortening velocity correlated with MyHCIIB, IIA, and I content, the more abundant MyHC isoforms expressed within individual myofibers. Importantly, single fibers with similar or identical shortening velocities expressed significantly different ratios of MyHC isoforms. The vast majority of myofibers in both the orbital and global layers expressed more than one MyHC isoform, with up to six isoforms in single fiber segments. MyHC expression varied significantly and unpredictably along the length of single myofibers. Thus EOM myofibers represent a continuum in their histological and physiological characteristics. This continuum would facilitate fine motor control of eye position, speed, and direction of movement in all positions of gaze and with all types of eye movements-from slow vergence movements to fast saccades. To fully understand how the brain controls eye position and movements, it is critical that this significant EOM myofiber heterogeneity be integrated into hypotheses of oculomotor control.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy