SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peebo Beatrice) "

Sökning: WFRF:(Peebo Beatrice)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bourghardt Peebo, Beatrice, et al. (författare)
  • Relapsing polychondritis : A rare disease with varying symptoms
  • 2004
  • Ingår i: Acta Ophthalmologica Scandinavica. - : Wiley. - 1395-3907 .- 1600-0420. ; 82:4, s. 472-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Relapsing polychondritis (RPC) is a rare systemic disease affecting primarily cartilaginous and proteoglycan-rich structures. It is a potentially fatal disease with unknown aetiology. There are no specific tests for RPC. The diagnosis is dependant on clinical criteria, which include chondritis of both auricles, non-erosive inflammatory polyarthritis, nasal chondritis, ocular inflammation, respiratory tract chondritis and cochlear and/or vestibular damage. Ocular symptoms will occur in approximately 60% of RPC patients. As an example, a patient with signs of RPC is described. Methods/Result: A 30-year-old woman was referred to our department for evaluation of a central corneal ulcer in the left eye. She had a history of recurrent pain in both her auricles and was also found to have a nasal septum perforation. Relapsing polychondritis was suspected. Conclusion: Non-healing corneal ulcers should alert the ophthalmologist to look for unusual reasons for this condition. RPC is one possible cause.
  •  
2.
  • Ali, Zaheer, et al. (författare)
  • Intussusceptive Vascular Remodeling Precedes Pathological Neovascularization
  • 2019
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 39:7, s. 1402-1418
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective—Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model.Approach and Results—Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR.Conclusions—Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future.Visual Overview—An online visual overview is available for this article.
  •  
3.
  • Bourghardt Peebo, Beatrice, et al. (författare)
  • An in Vivo Method for Visualizing Flow Dynamics of Cells within Corneal Lymphatics
  • 2013
  • Ingår i: Lymphatic Research and Biology. - : Mary Ann Liebert. - 1539-6851 .- 1557-8585. ; 11:2, s. 93-100
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Monitoring the trafficking of specific cell populations within lymphatics could improve our understanding of processes such as transplant rejection and cancer metastasis. Current methods, however, lack appropriate image resolution for single-cell analysis or are incompatible with in vivo and longitudinal monitoring of lymphatics in their native state. We therefore sought to achieve high-resolution live imaging of the dynamic behavior of cells within lymph vessels in the rat cornea.Methods/Results: Inflammatory angiogenesis was induced by suture placement in corneas of Wistar rats. Pre- and up to 3 weeks post-induction, corneas were noninvasively examined by laser-scanning in vivo corneal confocal microscopy (IVCM) using only endogenous contrast. Lymph vessels and the cells harbored therein were documented by still images, real-time video, and 3D confocal stack reconstruction of live tissue. In vivo, conjunctival and corneal lymphatics were morphologically distinct, those with corneal location being one-quarter the diameter of those in the conjunctiva (p<0.001). Cells were recruited to initially empty pre-existing lymph vessels during the first day of inflammation and maintained a dense occupation of vessels for up to 7 days. A diverse population of cells (diameter range: 1.5–27.5 μm) with varying morphology was observed, and exhibited variable flow patterns and were transported singly and in clusters of at least 2–9 adherent cells.Conclusions: The in vivo microscopic technique presented enables lymph vessels and cell trafficking to be studied in high resolution in a minimally-perturbed physiologic milieu.
  •  
4.
  • Bourghardt Peebo, Beatrice, 1968- (författare)
  • Angiogenesis from a new perspective
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Angiogenesis is the emergence of new blood and lymph vessels from existing ones. In the pathologic form it contributes to the onset and progression of numerous different human disorders such as cancer, inflammation, atherosclerosis and blinding eye diseases. There exist a number of models to study angiogenesis, both in vitro and in vivo, but there is no single perfect model so far. Consequently there is a need to develop new angiogenesis assays for evaluating blood and lymph vessel behaviour in different physiologic settings.The aim of this thesis was to gain insight into in vivo angiogenesis introducing a new technique in an inflammatory corneal model. The method involved in vivo examination of the cornea and subsequent comparison of in vivo findings with ex vivo immunohistochemical analysis of the same tissue samples. An existing suture model for inflammatory angiogenesis in the cornea was modified for in vivo observations with a clinically-approved corneal confocal microscope.In this thesis, corneal lymph vessels were characterized for the first time in vivo and findings from the experimental bench could be applied in a clinical setting, where presumed lymphatics were observed in a corneal transplant patient with rejection. Furthermore, the technique was extended to investigate time-lapse processes in sprouting and regressing capillaries, and led to a number of new observations. CD11b+ myeloid cells constitute the first bulk of infiltrating inflammatory cells and contribute to inflammatory sprouting and regression in numerous ways including pre-patterning of the corneal stroma and guiding of capillary sprouts. Newly formed hemangiogenic sprouts are perfused with a slow-moving fluid and have a lumen. In blood vessel regression, capillary remodeling occurred by abandonment of sprout tips in close association with macrophages and vascular loops formed by presumed intussusceptive angiogenesis. In addition, a network of pericyte- and endothelium-free basement membrane tubes was formed after desertion or degradation of vascular endothelium in former corneal capillaries.In conclusion, we introduce a new in vivo technique for investigating angiogenesis in a corneal model were in vivo findings can be interpreted with ex vivo definitions of specific cell types by immunohistochemistry. Findings from pre-clinical experiments have been possible to apply in a clinical setting when examining patients with corneal pathology.
  •  
5.
  • Bourghardt Peebo, Beatrice, et al. (författare)
  • Cellular level characterization of capillary regression in inflammatory angiogenesis using an in vivo corneal model
  • 2011
  • Ingår i: Angiogenesis. - : Springer Verlag (Germany). - 0969-6970 .- 1573-7209. ; 14:3, s. 393-405
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we introduce a technique for repeated, microscopic observation of single regressing capillaries in vivo in inflamed murine corneas. Natural capillary regression was initiated by removal of inflammatory stimulus during an active pro-angiogenic phase, while the additional impact of anti-angiogenic treatment with triamcinolone or bevazicumab was investigated. Capillaries regressed naturally within 1 week and treatments did not further enhance the natural regression. Morphologically, early-phase regression was characterized by significant lumen narrowing and a significant reduction in CD11b+ myeloid cell infiltration of the extracellular matrix. By 1 week, vascular remodeling occurred concomitant with CD11b+CD68+KiM2R+ mature macrophage localization on capillary walls. Empty conduits without blood flow, positive for collagen IV and devoid of vascular endothelium and pericytes, were apparent in vivo and by 3 weeks were more numerous than perfused capillaries. By 3 weeks, macrophages aggregated around remaining perfused capillaries and were observed in apposition with degrading capillary segments. Abrupt termination of capillary sprouting in our regression model further revealed vascular endothelial abandonment of sprout tips and perfused capillary loop formation within a single angiogenic sprout, possibly as an intussusceptive response to cessation of the stimulus. Finally, we observed lumen constriction and macrophage localization on capillary walls in vivo in a clinical case of corneal capillary regression that paralleled findings in our murine model.
  •  
6.
  • Bourghardt Peebo, Beatrice, et al. (författare)
  • Cellular-Level Characterization of Lymph Vessels in Live, Unlabeled Corneas by In Vivo Confocal Microscopy
  • 2010
  • Ingår i: Investigative Ophthalmology and Visual Science. - Rockville, MD, United States : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404 .- 1552-5783. ; 51:2, s. 830-835
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. To determine whether in vivo confocal microscopy (IVCM) of the cornea can be used for the label-free detection and monitoring of lymph vessels in live corneas.METHODS. Parallel corneal hemangiogenesis and lymphangiogenesis was induced by the placement of a single suture in one cornea of male Wistar rats. Fourteen days after suture placement and under general anesthesia, laser-scanning IVCM was performed in the vascularized region. Corneas were subsequently excised for flat-mount double immunofluorescence with a pan-endothelial marker (PECAM-1/CD31) and a lymphatic endothelial specific marker (LYVE-1). Using the suture area and prominent blood vessels as points of reference, the identical microscopic region was located in both fluorescent and archived in vivo images. Additionally, vessel diameter, lumen contrast, and cell diameter and velocity within vessels were quantified from in vivo images.RESULTS. Comparison of identical corneal regions in fluorescence and in vivo revealed prominent CD31(+)/LYVE-1(3+) lymph vessels that were visible in vivo. In vivo, corneal lymph vessels were located in the vascularized area in the same focal plane as blood vessels but had a darker lumen (P andlt; 0.001) sparsely populated by highly reflective cells with diameters similar to those of leukocytes in blood vessels (P = 0.61). Cell velocity in lymph vessels was significantly reduced compared with blood particle velocity (P andlt; 0.001). Morphologic characteristics enabled subsequent identification of corneal lymphatics in live, vascularized rat corneas before immunofluorescence labeling.CONCLUSIONS. IVCM enabled the nondestructive, label-free, in vivo detection of corneal lymphatics. IVCM provides the possibility of observing lymphatic activity in the same live corneas longitudinally and, as a clinical instrument, of monitoring corneal lymphatics in live human subjects.
  •  
7.
  • Bourghardt Peebo, Beatrice, 1968-, et al. (författare)
  • Expression of the focal adhesion protein PINCH in normal and alkali-injured corneas and the role of PMNs
  • 2007
  • Ingår i: Acta Ophthalmologica Scandinavica. - : Wiley. - 1395-3907 .- 1600-0420. ; 85:4, s. 395-400
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To evaluate the role of particularly interesting new cysteine-histidine-rich protein (PINCH) in corneal wound healing and early neovascularization and to assess the influence of granulocytes. Methods: A standardized corneal alkali wound was inflicted under general anaesthesia to the right eye of 14 New Zealand White rabbits. Seven of the rabbits received i.v. 5 mg/kg fucoidin every 2 hours to prevent granulocytes from entering the wound area. After 36 hours, the rabbits were killed, the corneas excised, fixed in 4% formaldehyde and embedded in paraffin. The sections were double-stained with antibodies against PINCH and with haematoxylin. Results: In the normal cornea and limbus, PINCH was weakly expressed in the corneal epithelium and in a wedge of the conjunctival stroma. In the wounded corneas, PINCH expression was seen in the frontline of repopulating endothelial and epithelial cells, and in active keratocytes. The vascular endothelium and the granulocytes expressed PINCH, as did the conjunctival epithelium. In the fucoidin-treated rabbits, PINCH expression was markedly reduced. The vascular endothelial cells and the few granulocytes did not express PINCH in these rabbits. Conclusions: PINCH is only slightly expressed in the normal cornea. A corneal wound induces PINCH expression in the repopulating cells, in the vascular endothelial cells of the limbus, in the limbal epithelium and in the granulocytes. Exclusion of granulocytes reduces expression of PINCH and there is no expression at all in the vascular endothelium. © 2007 The Authors Journal compilation 2007 Acta Ophthalmol Scand.
  •  
8.
  •  
9.
  •  
10.
  • Bourghardt Peebo, Beatrice, et al. (författare)
  • Time-Lapse In Vivo Imaging of Corneal Angiogenesis: The Role of Inflammatory Cells in Capillary Sprouting
  • 2011
  • Ingår i: Investigative Ophthalmology and Visual Science. - : Research in Vision and Opthalmology. - 0146-0404 .- 1552-5783. ; 52:6, s. 3060-3068
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE. To elucidate the temporal sequence of events leading to new capillary sprouting in inflammatory corneal angiogenesis. METHODS. Angiogenesis was induced by corneal suture placement in Wistar rats. The inflamed region was examined by time-lapse in vivo confocal microscopy for up to 7 days. At 6 and 12 hours and 1, 2, 4, and 7 days, corneas were excised for flat mount immunofluorescence with primary antibodies for CD31, CD34, CD45, CD11b, CD11c, Ki-M2R, NG2, and alpha-SMA. From days 0 to 4, the in vivo extravasation and expansion characteristics of single limbal vessels were quantified. RESULTS. Starting hours after induction and peaking at day 1, CD45(+)CD11b(+) myeloid cells extravasated from limbal vessels and formed endothelium-free tunnels within the stroma en route to the inflammatory stimulus. Limbal vessel diameter tripled on days 2 to 3 as vascular buds emerged and transformed into perfused capillary sprouts less than 1 day later. A subset of spindle-shaped CD11b(+) myeloid-lineage cells, but not dendritic cells or mature macrophages, appeared to directly facilitate further capillary sprout growth. These cells incorporated into vascular endothelium near the sprout tip, co-expressing endothelial marker CD31. Sprouts had perfusion characteristics distinct from feeder vessels and many sprout tips were open-ended. CONCLUSIONS. Time-lapse in vivo corneal confocal microscopy can be used to track a temporal sequence of events in corneal angiogenesis. The technique has revealed potential roles for myeloid cells in promoting vessel sprouting in an inflammatory corneal setting.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (27)
doktorsavhandling (4)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (26)
övrigt vetenskapligt/konstnärligt (9)
Författare/redaktör
Lagali, Neil (20)
Peebo, Beatrice (13)
Fagerholm, Per (8)
Lennikov, Anton (8)
Jensen, Lasse (7)
Mirabelli, Pierfranc ... (7)
visa fler...
Mukwaya, Anthonny (4)
Utheim, Tor Paaske (3)
Rolandsson, Olov (3)
Levin, Lars-Åke (3)
Ali, Zaheer (3)
Wiréhn, Ann-Britt (3)
Badian, Reza A. (3)
Allgeier, Stephan (3)
Peterson, Magnus, 19 ... (2)
Dahlin, Lars B. (2)
Rosenqvist, Ulf (2)
Ntzouni, Maria (2)
Heintz, Emelie (2)
Kvanta, Anders (1)
Moustardas, Petros (1)
Lindvall, Jessica M. (1)
Sun, Xiao-Feng, 1959 ... (1)
Deng, Qiaolin (1)
Dahlin, Lars (1)
Lagali, Neil, Profes ... (1)
Fagerholm, Per, Prof ... (1)
Rafat, Mehrdad (1)
Biesemeier, Antje (1)
Ramskold, Daniel (1)
Giatrellis, Sarantis (1)
Mammadzada, Parviz (1)
Cao, Renhai (1)
Marass, Michele (1)
Gerri, Claudia (1)
Hildesjö, Camilla (1)
Taylor, Michael (1)
del Peso, Luis (1)
Sandberg, Rickard (1)
Schraermeyer, Ulrich (1)
Andre, Helder (1)
Steffensen, John F. (1)
Cao, Yihai (1)
Kele, Julianna (1)
Lagali, Neil S, 1973 ... (1)
Frennesson, Christin ... (1)
Peterson, Magnus (1)
Behndig, Anders (1)
ROSENQVIST, U (1)
Wiklund, Anna (1)
visa färre...
Lärosäte
Linköpings universitet (34)
Umeå universitet (3)
Uppsala universitet (3)
Lunds universitet (2)
Karolinska Institutet (2)
Stockholms universitet (1)
Språk
Engelska (35)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy