SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peekhaus Norbert) "

Sökning: WFRF:(Peekhaus Norbert)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bicak, Mesude, et al. (författare)
  • Genetic signature of prostate cancer mouse models resistant to optimized hK2 targeted α-particle therapy
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 117:26, s. 15172-15181
  • Tidskriftsartikel (refereegranskat)abstract
    • Hu11B6 is a monoclonal antibody that internalizes in cells expressing androgen receptor (AR)-regulated prostate-specific enzyme human kallikrein-related peptidase 2 (hK2; KLK2). In multiple rodent models, Actinium-225-labeled hu11B6-IgG1 ([225Ac]hu11B6-IgG1) has shown promising treatment efficacy. In the present study, we investigated options to enhance and optimize [225Ac]hu11B6 treatment. First, we evaluated the possibility of exploiting IgG3, the IgG subclass with superior activation of complement and ability to mediate FC-γ-receptor binding, for immunotherapeutically enhanced hK2 targeted α-radioimmunotherapy. Second, we compared the therapeutic efficacy of a single high activity vs. fractionated activity. Finally, we used RNA sequencing to analyze the genomic signatures of prostate cancer that progressed after targeted α-therapy. [225Ac]hu11B6-IgG3 was a functionally enhanced alternative to [225Ac]hu11B6-IgG1 but offered no improvement of therapeutic efficacy. Progression-free survival was slightly increased with a single high activity compared to fractionated activity. Tumor-free animals succumbing after treatment revealed no evidence of treatment-associated toxicity. In addition to up-regulation of canonical aggressive prostate cancer genes, such as MMP7, ETV1, NTS, and SCHLAP1, we also noted a significant decrease in both KLK3 (prostate-specific antigen ) and FOLH1 (prostate-specific membrane antigen) but not in AR and KLK2, demonstrating efficacy of sequential [225Ac]hu11B6 in a mouse model.
  •  
2.
  • Storey, Claire M, et al. (författare)
  • Quantitative In Vivo Imaging of the Androgen Receptor Axis Reveals Degree of Prostate Cancer Radiotherapy Response
  • 2023
  • Ingår i: Molecular cancer research : MCR. - 1557-3125. ; 21:4, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-invasive biomarkers for androgen receptor (AR) pathway activation are urgently needed to better monitor patient response to prostate cancer (PCa) therapies. AR is a critical driver and mediator of resistance of PCa but currently available non-invasive PCa biomarkers to monitor AR activity are discordant with downstream AR pathway activity. External beam radiotherapy (EBRT) remains a common treatment for all stages of PCa, and DNA damage induced by EBRT upregulates AR pathway activity to promote therapeutic resistance. [89Zr]11B6-PET is a novel modality targeting prostate-specific protein human kallikrein 2 (hK2), which is a surrogate biomarker for AR activity. Here, we studied if [&sup89;Zr]11B6-PET can accurately assess EBRT-induced AR activity. Genetic and human PCa mouse models received EBRT (2-50 Gy) and treatment response was monitored by [89Zr]11B6-PET/CT. Radiotracer uptake and expression of AR and AR target genes was quantified in resected tissue. EBRT increased AR pathway activity and [&sup89;Zr]11B6 uptake in LNCaP-AR and 22RV1 tumors. EBRT increased prostate-specific [&sup89;Zr]11B6 uptake in PCa-bearing mice (Hi-Myc x Pb_KLK2) with no significant changes in uptake in healthy (Pb_KLK2) mice, and this correlated with hK2 protein levels. Implications: hK2 expression in PCa tissue is a proxy of EBRT-induced AR activity that can non-invasively be detected using [&sup89;Zr]11B6-PET; further clinical evaluation of hK2-PET for monitoring response and development of resistance to EBRT in real time is warranted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy