SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pei Yifan) "

Sökning: WFRF:(Pei Yifan)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Borodin, Pavel, et al. (författare)
  • Mendelian nightmares : the germline-restricted chromosome of songbirds
  • 2022
  • Ingår i: Chromosome Research. - : Springer Nature. - 0967-3849 .- 1573-6849. ; 30:2-3, s. 255-272
  • Forskningsöversikt (refereegranskat)abstract
    • Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.
  •  
3.
  • Mueller, Jakob C., et al. (författare)
  • Micro Germline-Restricted Chromosome in Blue Tits : Evidence for Meiotic Functions
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The germline-restricted chromosome (GRC) is likely present in all songbird species but differs widely in size and gene content. This extra chromosome has been described as either a microchromosome with only limited basic gene content or a macrochromosome with enriched gene functions related to female gonad and embryo development. Here, we assembled, annotated, and characterized the first micro-GRC in the blue tit (Cyanistes caeruleus) using high-fidelity long-read sequencing data. Although some genes on the blue tit GRC show signals of pseudogenization, others potentially have important functions, either currently or in the past. We highlight the GRC gene paralog BMP15, which is among the highest expressed GRC genes both in blue tits and in zebra finches (Taeniopygia guttata) and is known to play a role in oocyte and follicular maturation in other vertebrates. The GRC genes of the blue tit are further enriched for functions related to the synaptonemal complex. We found a similar functional enrichment when analyzing published data on GRC genes from two nightingale species (Luscinia spp.). We hypothesize that these genes play a role in maintaining standard maternal inheritance or in recombining maternal and paternal GRCs during potential episodes of biparental inheritance.
  •  
4.
  • Pei, Yifan, et al. (författare)
  • Occasional paternal inheritance of the germline-restricted chromosome in songbirds
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 119:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Songbirds have one special accessory chromosome, the so-called germline-restricted chromosome (GRC), which is only present in germline cells and absent from all somatic tissues. Earlier work on the zebra finch (Taeniopygia guttata castanotis) showed that the GRC is inherited only through the female line-like the mitochondria-and is eliminated from the sperm during spermatogenesis. Here, we show that the GRC has the potential to be paternally inherited. Confocal microscopy using GRC-specific fluorescent in situ hybridization probes indicated that a considerable fraction of sperm heads (1 to 19%) in zebra finch ejaculates still contained the GRC. In line with these cytogenetic data, sequencing of ejaculates revealed that individual males from two families differed strongly and consistently in the number of GRCs in their ejaculates. Examining a captive-bred male hybrid of the two zebra finch subspecies (T. g. guttata and T. g. castanotis) revealed that the mitochondria originated from a castanotis mother, whereas the GRC came from a guttata father. Moreover, analyzing GRC haplotypes across nine castanotis matrilines, estimated to have diverged for up to 250,000 y, showed surprisingly little variability among GRCs. This suggests that a single GRC haplotype has spread relatively recently across all examined matrilines. A few diagnostic GRC mutations that arose since this inferred spreading suggest that the GRC has continued to jump across matriline boundaries. Our findings raise the possibility that certain GRC haplotypes could selfishly spread through the population via occasional paternal transmission, thereby out-competing other GRC haplotypes that were limited to strict maternal inheritance, even if this was partly detrimental to organismal fitness.
  •  
5.
  • Pei, Yifan, et al. (författare)
  • Weak antagonistic fitness effects can maintain an inversion polymorphism
  • 2023
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 32:13, s. 3575-3585
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of chromosomal inversion polymorphisms has received much recent attention, particularly in cases where inversions have drastic effects on phenotypes and fitness (e.g. lethality of homozygotes). Less attention has been paid to the question of the maintenance of inversion polymorphisms that show only weak effects. Here, we study the maintenance of such an inversion polymorphism that links 250 genes on chromosome Tgu11 in the zebra finch (Taeniopygia guttata). Based on data from over 6000 captive birds, we estimated the effects of this inversion on a wide range of fitness-related traits. We found that, compared with the ancestral allele A, the inverted allele D had small additive beneficial effects on male siring success and on female fecundity. These fitness-enhancing effects may explain the initial spread of the derived D allele (allele frequency 53%). However, individuals that were homozygous for D had a slightly lower survival rate, which may explain why the D allele has not spread to fixation. We used individual-based simulations to examine how an inversion polymorphism with such antagonistic fitness effects behaves over time. Our results indicate that polymorphisms become stabilized at an intermediate allele frequency if the inversion links an additively beneficial allele of small effect size to a recessive weakly deleterious mutation, overall resulting in weak net heterosis. Importantly, this conclusion remains valid over a wide range of selection coefficients against the homozygous DD (up to lethality), suggesting that the conditions needed to maintain the polymorphism may frequently be met. However, the simulations also suggest that in our zebra finch populations, the estimated recessive deleterious effect of the D allele (on survival in captivity) is not quite large enough to prevent fixation of the D allele in the long run. Estimates of fitness effects from free-living populations are needed to validate these results.
  •  
6.
  • Peona, Valentina, et al. (författare)
  • Teaching transposon classification as a means to crowd source the curation of repeat annotation : a tardigrade perspective
  • 2024
  • Ingår i: Mobile DNA. - : BioMed Central (BMC). - 1759-8753. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundThe advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences.ResultsHere, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries.ConclusionsThe collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.
  •  
7.
  • Vontzou, Niki, et al. (författare)
  • Songbird germline-restricted chromosome as a potential arena of genetic conflicts
  • 2023
  • Ingår i: Current Opinion in Genetics and Development. - : Elsevier. - 0959-437X .- 1879-0380. ; 83
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic conflicts can arise between components of the genome with different inheritance strategies. The germline-restricted chromosome (GRC) of songbirds shows unusual mitotic and meiotic transmission compared with the rest of the genome. It is excluded from somatic cells and maintained only in the germline. It is usually present in one copy in the male germline and eliminated during spermatogenesis, while in the female germline, it usually occurs in two copies and behaves as a regular chromosome. Here, we review what is known about the GRC's evolutionary history, genetic content, and expression and discuss how it may be involved in different types of genetic conflicts. Finally, we interrogate the potential role of the GRC in songbird germline development, highlighting several unsolved mysteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy