SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pelliccioni M.) "

Sökning: WFRF:(Pelliccioni M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pinsky, L., et al. (författare)
  • Measurement of Fragmentation Products including Angular Distributions for 3, 5, and 10 GeV/A C and Si on several nuclear targets at the AGS
  • 2010
  • Ingår i: 2009 12th International Conference on Nuclear Reaction Mechanisms, NRM 2009; Varenna; Italy; 15 June 2009 through 19 June 2009. - 2078-8835. - 9789290833413 ; 2, s. 431-437
  • Konferensbidrag (refereegranskat)abstract
    • Motivated by differences in the predicted fragmentation of heavy ions at energies around 5 GeV/A as employed in the event generators used by the FLUKA Monte Carlo Code [1], a set of measurements were carried out at the AGS facility at the Brookhaven National Laboratory to determine as much information as possible about the cross sections to allow harmonization of those event generators for these incident lab energies. The FLUKA Code employs the RQMD event generator of Sorge [2] for heavy ion interactions starting at 100 MeV/A and extending into the region around 5 GeV/A. Above those energies the DPMJET code of Ranft and Roesler [3] is typically employed to simulate such interactions. The detailed predictions of these event generators had some disagreement in the vicinity of this crossover energy and in order to tune these codes to be in closer harmony at the transition, and of course to be simulating nature as closely as possible, data were taken at 3, 5 and 10 GeV/A with beams of Fe, Si and C on a variety of targets including C, A1. Fe and Cu. The Fe data have not been fully analyzed, but results from the C and Si beams are available and the forward fragment spectrum along with a measurement of the charged particle angular distribution in a set of Si strip detectors out to about 45 degrees in the lab are available. These include sufficient statistics to provide the charged particle distributions as a function of the major projectile fragment. The detectors used in this measurement were based on what were reasonably available to us, and as such were limited in capability, and required separate data acquisition systems. Nevertheless, spectra were obtained that should be sufficient to enable the harmonization of the event generator codes at the crossover energy. This paper discusses only the experimental results and not the impact of those results on the FLUKA code.
  •  
2.
  • Battistoni, G, et al. (författare)
  • FLUKA Monte Carlo calculations for hadrontherapy application
  • 2013
  • Ingår i: CERN-Proceedings-2012-002. ; , s. 461-467
  • Konferensbidrag (refereegranskat)abstract
    • Monte Carlo (MC) codes are increasingly spreading in the hadrontherapy community due to their detailed description of radiation transport and interaction with matter. The suitability of a MC code for application to hadrontherapy demands accurate and reliable physical models for the description of the transport and the interaction of all components of the expected radiation field (ions, hadrons, electrons, positrons and photons). This contribution will address the specific case of the general-purpose particle and interaction code FLUKA. In this work, an application of FLUKA will be presented, i.e. establishing CT (computed tomography)-based calculations of physical and RBE (relative biological effectiveness)-weighted dose distributions in scanned carbon ion beam therapy.
  •  
3.
  • Battistoni, G., et al. (författare)
  • The FLUKA code and its use in hadron therapy
  • 2008
  • Ingår i: Nuovo Cimento della Societa Italiana di Fisica C. - Italian Physical Society. - 1124-1896. ; 31:1, s. 69-75
  • Tidskriftsartikel (refereegranskat)abstract
    • FLUKA is a multipurpose Monte Carto code describing transport and interaction with matter of a, large variety of particles over a wide energy range ill complex geometries. FLUKA is successfully applied ill several fields, including, but not only particle physics, cosmic-ray physics, dosimetry, radioprotection, hadron therapy. space radiation, accelerator design and neutronics. Here we briefly review recent model developments and provide examples of applications to hadron therapy, including calculation of physical and biological dose for comparison with analytical treatment planning engines as well as beta(+)-activation for therapy monitoring by means of positron emission tomography.
  •  
4.
  • Ballarini, F., et al. (författare)
  • The physics of the FLUKA code : Recent developments
  • 2007
  • Ingår i: Advances in Space Research. - Elsevier : Elsevier BV. - 0273-1177 .- 1879-1948. ; 40:9, s. 1339-1349
  • Tidskriftsartikel (refereegranskat)abstract
    • FLUKA is a Monte-Carlo code able to simulate interaction and transport of hadrons, heavy ions and electromagnetic particles from few keV (or thermal neutron) to cosmic ray energies in whichever material. The highest priority in the design and development of the code has always been the implementation and improvement of sound and modern physical models. A summary of the FLUKA physical models is given, while recent developments are described in detail: among the others, extensions of the intermediate energy hadronic interaction generator, refinements in photon cross sections and interaction models, analytical on-line evolution of radio-activation and remnant dose. In particular, new developments in the nucleus-nucleus interaction models are discussed. Comparisons with experimental data and examples of applications of relevance for space radiation are also provided.
  •  
5.
  • Battistoni, Giuseppe, et al. (författare)
  • Applications of FLUKA Monte Carlo code for nuclear and accelerator physics
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research Section B. - : Elsevier BV. - 0168-583X .- 1872-9584. ; 269:24, s. 2850-2856
  • Tidskriftsartikel (refereegranskat)abstract
    • FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on Linux. The validity of the physical models implemented in FLUKA has been benchmarked against a variety of experimental data over a wide energy range, from accelerator data to cosmic ray showers in the Earth atmosphere. FLUKA is widely used for studies related both to basic research and to applications in particle accelerators, radiation protection and dosimetry, including the specific issue of radiation damage in space missions, radiobiology (including radiotherapy) and cosmic ray calculations.After a short description of the main features that make FLUKA valuable for these topics, the present paper summarizes some of the recent applications of the FLUKA Monte Carlo code in the nuclear as well high energy physics. In particular it addresses such topics as accelerator related applications.
  •  
6.
  • Battistoni, Giuseppe, et al. (författare)
  • The Application of the Monte Carlo Code FLUKA in Radiation Protection Studies for the Large Hadron Collider
  • 2011
  • Konferensbidrag (refereegranskat)abstract
    • The multi-purpose particle interaction and transport code FLUKA is integral part of all radiation protection studies for the design and operation of the Large Hadron Collider (LHC) at CERN. It is one of the very few codes available for this type of calculations which is capable to calculate in one and the same simulation proton-proton and heavy ion collisions at LHC energies as well as the entire hadronic and electromagnetic particle cascade initiated by secondary particles in detectors and beam-line components from TeV energies down to energies of thermal neutrons. The present paper reviews these capabilities of FLUKA in sketching the relevant physics models along with examples ofradiation protection studies for the LHC such as shielding studies for underground areas occupied by personnel during LHC operation and the simulation of induced radioactivity around beam loss points. Integral part of the FLUKA development is a careful benchmarking of specific models as well as the code performance in actual, complex applications which is demonstrated with examples of studies relevant to radiation protection at the LHC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy