SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Peltonen Palotie Leena) "

Sökning: WFRF:(Peltonen Palotie Leena)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Demirkan, Ayse, et al. (författare)
  • Genetic architecture of circulating lipid levels
  • 2011
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 19:7, s. 813-819
  • Tidskriftsartikel (refereegranskat)abstract
    • Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.
  •  
2.
  • Elks, Cathy E, et al. (författare)
  • Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:12, s. 1077-85
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10⁻⁶⁰) and 9q31.2 (P = 2.2 × 10⁻³³), we identified 30 new menarche loci (all P < 5 × 10⁻⁸) and found suggestive evidence for a further 10 loci (P < 1.9 × 10⁻⁶). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing.
  •  
3.
  • Laurila, Pirkka-Pekka, et al. (författare)
  • Genomic, transcriptomic, and lipidomic profiling highlights the role of inflammation in individuals with low high-density lipoprotein cholesterol
  • 2013
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - : Lippincott Williams & Wilkins. - 1079-5642 .- 1524-4636. ; 33:4, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Low high-density lipoprotein cholesterol (HDL-C) is associated with cardiometabolic pathologies. In this study, we investigate the biological pathways and individual genes behind low HDL-C by integrating results from 3 high-throughput data sources: adipose tissue transcriptomics, HDL lipidomics, and dense marker genotypes from Finnish individuals with low or high HDL-C (n=450).APPROACH AND RESULTS: In the pathway analysis of genetic data, we demonstrate that genetic variants within inflammatory pathways were enriched among low HDL-C associated single-nucleotide polymorphisms, and the expression of these pathways upregulated in the adipose tissue of low HDL-C subjects. The lipidomic analysis highlighted the change in HDL particle quality toward putatively more inflammatory and less vasoprotective state in subjects with low HDL-C, as evidenced by their decreased antioxidative plasmalogen contents. We show that the focal point of these inflammatory pathways seems to be the HLA region with its low HDL-associated alleles also associating with more abundant local transcript levels in adipose tissue, increased plasma vascular cell adhesion molecule 1 (VCAM1) levels, and decreased HDL particle plasmalogen contents, markers of adipose tissue inflammation, vascular inflammation, and HDL antioxidative potential, respectively. In a population-based look-up of the inflammatory pathway single-nucleotide polymorphisms in a large Finnish cohorts (n=11 211), no association of the HLA region was detected for HDL-C as quantitative trait, but with extreme HDL-C phenotypes, implying the presence of low or high HDL genes in addition to the population-genomewide association studies-identified HDL genes.CONCLUSIONS: Our study highlights the role of inflammation with a genetic component in subjects with low HDL-C and identifies novel cis-expression quantitative trait loci (cis-eQTL) variants in HLA region to be associated with low HDL-C.
  •  
4.
  • Leu, Monica, et al. (författare)
  • NordicDB : a Nordic pool and portal for genome-wide control data
  • 2010
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 18:12, s. 1322-1326
  • Tidskriftsartikel (refereegranskat)abstract
    • A cost-efficient way to increase power in a genetic association study is to pool controls from different sources. The genotyping effort can then be directed to large case series. The Nordic Control database, NordicDB, has been set up as a unique resource in the Nordic area and the data are available for authorized users through the web portal (http://www.nordicdb.org). The current version of NordicDB pools together high-density genome-wide SNP information from similar to 5000 controls originating from Finnish, Swedish and Danish studies and shows country-specific allele frequencies for SNP markers. The genetic homogeneity of the samples was investigated using multidimensional scaling (MDS) analysis and pairwise allele frequency differences between the studies. The plot of the first two MDS components showed excellent resemblance to the geographical placement of the samples, with a clear NW-SE gradient. We advise researchers to assess the impact of population structure when incorporating NordicDB controls in association studies. This harmonized Nordic database presents a unique genome-wide resource for future genetic association studies in the Nordic countries. European Journal of Human Genetics (2010) 18, 1322-1326; doi: 10.1038/ejhg.2010.112; published online 28 July 2010
  •  
5.
  • Lundmark, Per E, et al. (författare)
  • Evaluation of HapMap data in six populations of European descent
  • 2008
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 16:9, s. 1142-1150
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied how well the European CEU samples used in the Haplotype Mapping Project (HapMap) represent five European populations by analyzing nuclear family samples from the Swedish, Finnish, Dutch, British and Australian (European ancestry) populations. The number of samples from each population (about 30 parent-offspring trios) was similar to that in the HapMap sample sets. A panel of 186 single nucleotide polymorphisms (SNPs) distributed over the 1.5 Mb region of the GRID2 gene on chromosome 4 was genotyped. The genotype data were compared pair-wise between the HapMap sample and the other population samples. Principal component analysis (PCA) was used to cluster the data from different populations with respect to allele frequencies and to define the markers responsible for observed variance. The only sample with detectable differences in allele frequencies was that from Kuusamo, Finland. This sample also separated from the others, including the other Finnish sample, in the PCA analysis. A set of tagSNPs was defined based on the HapMap data and applied to the samples. The tagSNPs were found to capture the genetic variation in the analyzed region at r(2)>0.8 at levels ranging from 95% in the Kuusamo sample to 87% in the Australian sample. To capture the maximal genetic variation in the region, the Kuusamo, HapMap and Australian samples required 58, 63 and 73 native tagSNPs, respectively. The HapMap CEU sample represents the European samples well for tagSNP selection, with some caution regarding estimation of allele frequencies in the Finnish Kuusamo sample, and a slight reduction in tagging efficiency in the Australian sample.
  •  
6.
  • McEvoy, Brian P., et al. (författare)
  • Geographical structure and differential natural selection among North European populations
  • 2009
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 19:5, s. 804-814
  • Tidskriftsartikel (refereegranskat)abstract
    • Population structure can provide novel insight into the human past, and recognizing and correcting for such stratification is a practical concern in gene mapping by many association methodologies. We investigate these patterns, primarily through principal component (PC) analysis of whole genome SNP polymorphism, in 2099 individuals from populations of Northern European origin (Ireland, United Kingdom, Netherlands, Denmark, Sweden, Finland, Australia, and HapMap European-American). The major trends (PC1 and PC2) demonstrate an ability to detect geographic substructure, even over a small area like the British Isles, and this information can then be applied to finely dissect the ancestry of the European-Australian and European-American samples. They simultaneously point to the importance of considering population stratification in what might be considered a small homogeneous region. There is evidence from FST-based analysis of genic and nongenic SNPs that differential positive selection has operated across these populations despite their short divergence time and relatively similar geographic and environmental range. The pressure appears to have been focused on genes involved in immunity, perhaps reflecting response to infectious disease epidemic. Such an event may explain a striking selective sweep centered on the rs2508049-G allele, close to the HLA-G gene on chromosome 6. Evidence of the sweep extends over a 8-Mb/3.5-cM region. Overall, the results illustrate the power of dense genotype and sample data to explore regional population variation, the events that have crafted it, and their implications in both explaining disease prevalence and mapping these genes by association.
  •  
7.
  • Plunkett, Jevon, et al. (författare)
  • An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Coordination of fetal maturation with birth timing is essential for mammalian reproduction. In humans, preterm birth is a disorder of profound global health significance. The signals initiating parturition in humans have remained elusive, due to divergence in physiological mechanisms between humans and model organisms typically studied. Because of relatively large human head size and narrow birth canal cross-sectional area compared to other primates, we hypothesized that genes involved in parturition would display accelerated evolution along the human and/or higher primate phylogenetic lineages to decrease the length of gestation and promote delivery of a smaller fetus that transits the birth canal more readily. Further, we tested whether current variation in such accelerated genes contributes to preterm birth risk. Evidence from allometric scaling of gestational age suggests human gestation has been shortened relative to other primates. Consistent with our hypothesis, many genes involved in reproduction show human acceleration in their coding or adjacent noncoding regions. We screened.8,400 SNPs in 150 human accelerated genes in 165 Finnish preterm and 163 control mothers for association with preterm birth. In this cohort, the most significant association was in FSHR, and 8 of the 10 most significant SNPs were in this gene. Further evidence for association of a linkage disequilibrium block of SNPs in FSHR, rs11686474, rs11680730, rs12473870, and rs1247381 was found in African Americans. By considering human acceleration, we identified a novel gene that may be associated with preterm birth, FSHR. We anticipate other human accelerated genes will similarly be associated with preterm birth risk and elucidate essential pathways for human parturition.
  •  
8.
  • Plunkett, Jevon, et al. (författare)
  • Mother's Genome or Maternally-Inherited Genes Acting in the Fetus Influence Gestational Age in Familial Preterm Birth
  • 2009
  • Ingår i: Human Heredity. - : S. Karger AG. - 1423-0062 .- 0001-5652. ; 68:3, s. 209-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: While multiple lines of evidence suggest the importance of genetic contributors to risk of preterm birth, the nature of the genetic component has not been identified. We perform segregation analyses to identify the best fitting genetic model for gestational age, a quantitative proxy for preterm birth. Methods: Because either mother or infant can be considered the proband from a preterm delivery and there is evidence to suggest that genetic factors in either one or both may influence the trait, we performed segregation analysis for gestational age either attributed to the infant (infant's gestational age), or the mother (by averaging the gestational ages at which her children were delivered), using 96 multiplex preterm families. Results: These data lend further support to a genetic component contributing to birth timing since sporadic (i.e. no familial resemblance) and nontransmission (i.e. environmental factors alone contribute to gestational age) models are strongly rejected. Analyses of gestational age attributed to the infant support a model in which mother's genome and/or maternally-inherited genes acting in the fetus are largely responsible for birth timing, with a smaller contribution from the paternally-inherited alleles in the fetal genome. Conclusion: Our findings suggest that genetic influences on birth timing are important and likely complex. Copyright (C) 2009 S. Karger AG, Basel
  •  
9.
  • Plunkett, Jevon, et al. (författare)
  • Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth
  • 2010
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance. Methods: We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292 control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers. Results: Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C activity. Conclusions: Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels of prostaglandins, which are known to regulate labor.
  •  
10.
  • Sawcer, Stephen, et al. (författare)
  • Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 476:7359, s. 214-219
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy