SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Penghui Liu) "

Sökning: WFRF:(Penghui Liu)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liu, Qing, et al. (författare)
  • Unraveling the unique role of brown graphitic carbon nitride in robust CO2 photoreduction
  • 2023
  • Ingår i: Applied Surface Science. - : ELSEVIER. - 0169-4332 .- 1873-5584. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Photocatalytic CO2 reduction is one of the important means to alleviate the energy crisis. In this work, an oxygen linked and brown graphitic carbon nitride (GACN) was successfully prepared by thermal polymerization after oil bath method. GACN introduced oxygen atoms on surface of BulkCN. Various characterizations of the material show that the prepared GACN has a different structure and higher photoelectronic activity compared to BulkCN. GACN possessed strong photocatalytic CO2 reduction capacity, and the photocatalytic activity was significantly improved compared with BulkCN. In view of density functional theory calculations, it is proved that the oxygen atoms introduced by GACN increase CO2 photoreaction reactivity, enhance electronic activity and reduce the reaction energy barrier. This work can have a positive effect on the photocatalytic application of g-C3N4 with the existence of oxygen atoms.
  •  
2.
  • Liu, Gaopeng, et al. (författare)
  • Edge-Site-Rich Ordered Macroporous BiOCl Triggers C(sic)O Activation for Efficient CO2 Photoreduction
  • 2022
  • Ingår i: Small. - : WILEY-V C H VERLAG GMBH. - 1613-6810 .- 1613-6829. ; 18:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Endowing a semiconductor with tunable edge active sites will effectively enhance catalytic performance. Herein, an edge-site-rich ordered macroporous BiOCl (BiOCl-P) with abundant dangling bonds is constructed via the colloidal crystal template method. The edge-site-rich ordered macroporous structure provides abundant adsorption sites for CO2 molecules, as well as forms numerous localized electron enrichment areas, accelerating charge transfer. DFT calculations reveal that the dangling bonds-rich configuration can effectively reduce the CO2 activation energy barrier, boost the C(sic)O double bond dissociation, and facilitate the proton electron coupling reaction. As a result, the BiOCl-P achieves a higher CO and CH4 generation rate of 78.07 and 3.03 mu mol g(-1) under 4 h Xe lamp irradiation in a solid-gas system. Finally, the CO2 molecules conversion process is further investigated by in situ Fourier-transform infrared spectroscopy. This work realizes a new avenue toward the design of vibrant semiconductors on the nanoscale to boost inert CO2 photoreduction.
  •  
3.
  • Penghui, Liu, et al. (författare)
  • Metaheuristic Optimization Algorithms Hybridized With Artificial Intelligence Model for Soil Temperature Prediction : Novel Model
  • 2020
  • Ingår i: IEEE Access. - : IEEE. - 2169-3536. ; 8, s. 51884-51904
  • Tidskriftsartikel (refereegranskat)abstract
    • An enhanced hybrid articial intelligence model was developed for soil temperature (ST) prediction. Among several soil characteristics, soil temperature is one of the essential elements impacting the biological, physical and chemical processes of the terrestrial ecosystem. Reliable ST prediction is signicant for multiple geo-science and agricultural applications. The proposed model is a hybridization of adaptive neuro-fuzzy inference system with optimization methods using mutation Salp Swarm Algorithm and Grasshopper Optimization Algorithm (ANFIS-mSG). Daily weather and soil temperature data for nine years (1 of January 2010 - 31 of December 2018) from ve meteorological stations (i.e., Baker, Beach, Cando, Crary and Fingal) in North Dakota, USA, were used for modeling. For validation, the proposed ANFIS-mSG model was compared with seven models, including classical ANFIS, hybridized ANFIS model with grasshopper optimization algorithm (ANFIS-GOA), salp swarm algorithm (ANFIS-SSA), grey wolf optimizer (ANFIS-GWO), particle swarm optimization (ANFIS-PSO), genetic algorithm (ANFIS-GA),and Dragon y Algorithm (ANFIS-DA). The ST prediction was conducted based on maximum, mean and minimum air temperature (AT). The modeling results evidenced the capability of optimization algorithms for building ANFIS models for simulating soil temperature. Based on the statistical evaluation; for instance, the root mean square error (RMSE) was reduced by 73%, 74.4%, 71.2%, 76.7% and 80.7% for Baker, Beach, Cando, Crary and Fingal meteorological stations, respectively, throughout the testing phase when ANFIS-mSG was used over the standalone ANFIS models. In conclusion, the ANFIS-mSG model was demonstrated as an effective and simple hybrid articial intelligence model for predicting soil temperature based on univariate air temperature scenario.
  •  
4.
  • Zhang, Jian, et al. (författare)
  • Rapidly Evolving Genes and Stress Adaptation of Two Desert Poplars, Populus euphratica and P. pruinosa
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:6, s. e66370-
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding which genes have evolved rapidly with the recent tree speciation in arid habitats can provide valuable insights into different adaptation mechanisms. We employed a comparative evolutionary analysis of expressed sequence tags (ESTs) from two desert poplars, Populus pruinosa and P. euphratica, which diverged in the recent past. Following an approach taken previously with P. euphratica, we conducted a deep transcriptomic analysis of P. pruinosa. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of two types of callus and desert-grown trees. De novo assembly generated 114,866 high-quality unique sequences using Solexa sequence data. Following assembly we were able to identify, with high confidence, 2859 orthologous sequence pairs between the two species. Based on the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we identified a total of 84 (2.9%) ortholog pairs exhibiting rapid evolution with signs of strong selection (Ka/Ks>1). Genes homologous to these ortholog pairs in model species are mainly involved in 'responses to stress', 'ubiquitin-dependent protein catabolic processes', and 'biological regulation'. Finally, we examined the expression patterns of candidate genes with rapid evolution in response to salt stress. Only one pair of orthologs up-regulated their expression in both species while three and four genes were found to up-regulated in P. pruinosa and in P. euphratica respectively. Our findings together suggest that the genes at the same category or network but with differentiated expressions or functions may have evolved rapidly during adaptive divergence of the two species to differentiated salty desert habitats.
  •  
5.
  • Zhang, Silan, et al. (författare)
  • Toward Stable p-Type Thiophene-Based Organic Electrochemical Transistors
  • 2023
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 33:40
  • Tidskriftsartikel (refereegranskat)abstract
    • Operational stability is essential for the success of organic electrochemical transistors (OECTs) in bioelectronics. The oxygen reduction reaction (ORR) is a common electrochemical side reaction that can compromise the stability of OECTs, but the relationship between ORR and materials degradation is poorly understood. In this study, the impact of ORR on the stability and degradation mechanisms of thiophene-based OECTs is investigated. The findings show that an increase in pH during ORR leads to the degradation of the polymer backbone. By using a protective polymer glue layer between the semiconductor channel and the aqueous electrolyte, ORR is effectively suppressed and the stability of the OECTs is significantly improved, resulting in current retention of nearly 90% for & AP;2 h cycling in the saturation regime.
  •  
6.
  • Zhu, Xingwang, et al. (författare)
  • Stacking Engineering of Heterojunctions in Half-Metallic Carbon Nitride for Efficient CO2 Photoreduction
  • 2023
  • Ingår i: Advanced Science. - : WILEY. - 2198-3844.
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhancing charge separation in semiconductor photocatalysts is a major challenge for efficient artificial photosynthesis. Herein, a compact heterojunction is designed by embedding half-metallic C(CN)(3) (hm-CN) hydrothermally in BiOBr (BOB) as the backbone. The interface between hm-CN and BOB is seamless and formed by covalent bonding to facilitate the transmission of photoinduced electrons from BOB to hm-CN. The transient photocurrents and electrochemical impedance spectra reveal that the modified composite catalyst exhibits a larger electron transfer rate. The photocatalytic activity of hm-CN/BOB increases significantly as indicated by a CO yield that is about four times higher than that of individual components. Density-functional theory calculations verify that the heterojunction improves electron transport and decreases the reaction energy barrier, thus promoting the overall photocatalytic CO2 conversion efficiency. The half-metal nitride coupled semiconductor heterojunctions might have large potential in artificial photosynthesis and related applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy