SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perez Zabaleta Mariel 1987 ) "

Sökning: WFRF:(Perez Zabaleta Mariel 1987 )

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guevara-Martínez, Mónica, 1989-, et al. (författare)
  • Regulating the production of (R)-3-hydroxybutyrate in Escherichia coli by N or P limitation
  • 2015
  • Ingår i: Frontiers in Microbiology. - : Frontiers Research Foundation. - 1664-302X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • The chiral compound (R)-3-hydroxybutyrate (3HB) is naturally produced by many wild type organisms as the monomer for polyhydroxybutyrate (PHB). Both compounds are commercially valuable and co-polymeric polyhydroxyalkanoates have been used e.g., in medical applications for skin grafting and as components in pharmaceuticals. In this paper we investigate cultivation strategies for production of 3HB in the previously described E. coil strain AF1000 pJBGT3RX. This strain produces extracellular 3HB by expression of two genes from the PHB pathway of Halomonas boliviensis. H. boliviensis is a newly isolated halophile that forms PHB as a storage compound during carbon excess and simultaneous limitation of another nutrient like nitrogen and phosphorous. We hypothesize that a similar approach can be used to control the flux from acetylCoA to 3HB also in E coli; decreasing the flux to biomass and favoring the pathway to the product. We employed ammonium- or phosphate-limited fed-batch processes for comparison of the productivity at different nutrient limitation or starvation conditions. The feed rate was shown to affect the rate of glucose consumption, respiration, 3HB, and acetic acid production, although the proportions between them were more difficult to affect. The highest 3HB volumetric productivity, 1.5 g L-1 h(-1), was seen for phosphate-limitation.
  •  
2.
  • Guevara-Martínez, Mónica, 1989-, et al. (författare)
  • The role of the acyl-CoA thioesterase YciA in the production of (R)-3-hydroxybutyrate by recombinant Escherichia coli
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; , s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.
  •  
3.
  • Khatami, Kasra, et al. (författare)
  • Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production
  • 2022
  • Ingår i: Journal of Environmental Management. - : Elsevier BV. - 0301-4797 .- 1095-8630. ; 305, s. 114337-114337
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyhydroxyalkanoates (PHAs), as bio-based plastics, promise a transition from petroleum products to green and sustainable alternatives. However, their commercial production is yet impeded by high production costs. In this study, we assessed synthetic culture in mono and co-culture modes for bacterial PHA production. It was demonstrated that volatile fatty acids (VFAs) derived from food waste and primary sludge are cheap carbon sources for maintaining high production yields in the synthetic cultures. The maximum obtained PHA was 77.54 ± 5.67% of cell dried weight (CDW) (1.723 g/L) from Cupriavidus necator and 54.9 ± 3.66% of CDW (1.088 g/L) from Burkholderia cepacia. The acquired results are comparable to those in literature using sugar substrates. Comparatively, lower PHA productions were obtained from the co-cultivations ranging between 36-45 CDW% (0.39–0.48 g/L). Meanwhile, the 3-hydroxyvalerate content in the biopolymers were increased up to 21%.
  •  
4.
  • Khatami, Kasra, et al. (författare)
  • Waste to bioplastics : How close are we to sustainable polyhydroxyalkanoates production?
  • 2021
  • Ingår i: Journal of Waste Management. - : Elsevier BV. - 2356-7724 .- 2314-6052. ; 119, s. 374-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased awareness of environmental sustainability with associated strict environmental regulations has incentivized the pursuit of novel materials to replace conventional petroleum-derived plastics. Polyhydroxyalkanoates (PHAs) are appealing intracellular biopolymers and have drawn significant attention as a viable alternative to petrochemical based plastics not only due to their comparable physiochemical properties but also, their outstanding characteristics such as biodegradability and biocompatibility. This review provides a comprehensive overview of the recent developments on the involved PHA producer microorganisms, production process from different waste streams by both pure and mixed microbial cultures (MMCs). Bio-based PHA production, particularly using cheap carbon sources with MMCs, is getting more attention. The main bottlenecks are the low production yield and the inconsistency of the biopolymers. Bioaugmentation and metabolic engineering together with cost effective downstream processing are promising approaches to overcome the hurdles of commercial PHA production from waste streams.
  •  
5.
  • Owusu-Agyeman, Isaac, et al. (författare)
  • Conceptual system for sustainable and next-generation wastewater resource recovery facilities
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 885, s. 163758-
  • Tidskriftsartikel (refereegranskat)abstract
    • Shifting the concept of municipal wastewater treatment to recover resources is one of the key factors contributing to a sustainable society. A novel concept based on research is proposed to recover four main bio-based products from mu-nicipal wastewater while reaching the necessary regulatory standards. The main resource recovery units of the pro-posed system include upflow anaerobic sludge blanket reactor for the recovery of biogas (as product 1) from mainstream municipal wastewater after primary sedimentation. Sewage sludge is co-fermented with external organic waste such as food waste for volatile fatty acids (VFAs) production as precursors for other bio-based production. A por-tion of the VFA mixture (product 2) is used as carbon sources in the denitrification step of the nitrification/denitrifica-ti on process as an alternative for nitrogen removal. The other alternative for nitrogen removal is the partial nitrification/anammx process. The VFA mixture is separated with nanofiltration/reverse osmosis membrane technol-ogy into low-carbon VFAs and high-carbon VFAs. Polyhydroxyalkanoate (as product 3) is produced from the low -carbon VFAs. Using membrane contactor-based processes and ion-exchange techniques, high-carbon VFAs are recovered as one-type VFA (pure VFA) and in ester forms (product 4). The nutrient-rich fermented and dewatered bio-solid is applied as a fertilizer. The proposed units are seen as individual resource recovery systems as well as a concept of an integrated system. A qualitative environmental assessment of the proposed resource recovery units confirms the positive environmental impacts of the proposed system.
  •  
6.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Bio-based conversion of volatile fatty acids from waste streams to polyhydroxyalkanoates using mixed microbial cultures
  • 2021
  • Ingår i: Bioresource Technology. - : Elsevier. - 0960-8524 .- 1873-2976. ; 323
  • Tidskriftsartikel (refereegranskat)abstract
    • Production of polyhydroxyalkanoates is an important field in the biorefinery as bio-alternative to conventional plastics. However, its commercialization is still limited by high production cost. In this study, a process with the potential to reduce the production cost of polyhydroxyalkanoates was proposed. Mixed cultures accumulated polyhydroxyalkanoates using volatile fatty acid-rich effluents from waste streams, without pH and temperature control. In addition, the impact of two types of carbon sources was investigated by analyzing the microbial community as well as the polyhydroxyalkanoate accumulation capacity. Mixed cultures successfully adapted to different substrates, consuming the volatile fatty acids in their totality. The phyla Proteobacteria, Bacteroidetes and Firmicutes dominated the bacterial community. The highest polyhydroxyalkanoate content was 43.5% w/w, which is comparable to contents reported from mixed cultures using synthetic carbon sources. The biopolymer consisted of (R)-3-hydroxybutyrate 94.8 ± 1.7% w/w and (R)-3-hydroxyvaletare 5.2 ± 1.7% w/w.
  •  
7.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Comparison of engineered Escherichia coli AF1000 and BL21 strains for (R)-3-hydroxybutyrate production in fed-batch cultivation
  • 2019
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer. - 0175-7598 .- 1432-0614. ; 103:14, s. 5627-5636
  • Tidskriftsartikel (refereegranskat)abstract
    • Accumulation of acetate is a limiting factor in recombinant production of (R)-3-hydroxybutyrate (3HB) by E. coli in high-cell-density processes. To alleviate this limitation, this study investigated two approaches: (i) Deletion of phosphotransacetylase (pta), pyruvate oxidase (poxB) and/or the isocitrate-lyase regulator (iclR), known to decrease acetate formation, on bioreactor cultivations designed to achieve high 3HB concentrations. (ii) Screening of different E. coli strain backgrounds (B, BL21, W, BW25113, MG1655, W3110 and AF1000) for their potential as low acetate-forming, 3HB-producing platforms. Deletion of pta and pta-poxB in the AF1000 strain background was to some extent successful in decreasing acetate formation, but also dramatically increased excretion of pyruvate and did not result in increased 3HB production in high-cell-density fed-batch cultivations. Screening of the different E. coli strains confirmed BL21 as a low acetate forming background. Despite low 3HB titers in low-cell density screening, 3HB-producing BL21 produced 5 times less acetic acid per mol of 3HB, which translated into a 2.3-fold increase in the final 3HB titer and a 3-fold higher volumetric 3HB productivity over 3HB-producing AF1000 strains in nitrogen-limited fed-batch cultivations. Consequently, the BL21 strain achieved the hitherto highest described volumetric productivity of 3HB (1.52 g L-1 h-1) and the highest 3HB concentration (16.3 g L-1) achieved by recombinant E. coli. Screening solely for 3HB titers in low-cell-density batch cultivations would not have identified the potential of this strain, reaffirming the importance of screening with the final production conditions in mind.
  •  
8.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Increasing the production of (R)-3-hydroxybutyrate in recombinant Escherichia coli by improved cofactor supply
  • 2016
  • Ingår i: Microbial Cell Factories. - : Springer. - 1475-2859. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: In a recently discovered microorganism, Halomonas boliviensis, polyhydroxybutyrate production was extensive and in contrast to other PHB producers, contained a set of alleles for the enzymes of this pathway. Also the monomer, (R)-3-hydroxybutyrate (3HB), possesses features that are interesting for commercial production, in particular the synthesis of fine chemicals with chiral specificity. Production with a halophilic organism is however not without serious drawbacks, wherefore it was desirable to introduce the 3HB pathway into Escherichia coli. Results: The production of 3HB is a two-step process where the acetoacetyl-CoA reductase was shown to accept both NADH and NADPH, but where the V-max for the latter was eight times higher. It was hypothesized that NADPH could be limiting production due to less abundance than NADH, and two strategies were employed to increase the availability; (1) glutamate was chosen as nitrogen source to minimize the NADPH consumption associated with ammonium salts and (2) glucose-6-phosphate dehydrogenase was overexpressed to improve NADPH production from the pentose phosphate pathway. Supplementation of glutamate during batch cultivation gave the highest specific productivity (q(3HB) = 0.12 g g(-1) h(-1)), while nitrogen depletion/zwf overexpression gave the highest yield (Y-3HB/CDW = 0.53 g g(-1)) and a 3HB concentration of 1 g L-1, which was 50 % higher than the reference. A nitrogen-limited fedbatch process gave a concentration of 12.7 g L-1 and a productivity of 0.42 g L-1 h(-1), which is comparable to maximum values found in recombinant E. coli. Conclusions: Increased NADPH supply is a valuable tool to increase recombinant 3HB production in E. coli, and the inherent hydrolysis of CoA leads to a natural export of the product to the medium. Acetic acid production is still the dominating by-product and this needs attention in the future to increase the volumetric productivity further.
  •  
9.
  • Perez-Zabaleta, Mariel, 1987-, et al. (författare)
  • Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm : What lessons can be learned from the Swedish perspective?
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 858
  • Tidskriftsartikel (refereegranskat)abstract
    • Wastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study pre-sents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples). This spans five major SARS-CoV-2 waves, where WBE data provided early warning signals for each wave. Further, the measured SARS-CoV-2 content in the wastewater correlated significantly with the level of positive COVID-19 tests (r = 0.86; p << 0.0001) measured by widespread testing of the population. Moreover, as a proof-of-concept, six SARS-CoV-2 variants of concern were monitored using hpPCR assay, demonstrating that var-iants can be traced through wastewater monitoring.During this long-term surveillance, two sampling protocols, two RNA concentration/extraction methods, two calcula-tion approaches, and normalization to the RNA virus Pepper mild mottle virus (PMMoV) were evaluated. In addition, a study of storage conditions was performed, demonstrating that the decay of viral RNA was significantly reduced upon the addition of glycerol to the wastewater before storage at -80 degrees C. Our results provide valuable information that can facilitate the incorporation of WBE as a prediction tool for possible future outbreaks of SARS-CoV-2 and preparations for future pandemics.
  •  
10.
  • Perez-Zabaleta, Mariel, 1987- (författare)
  • Metabolic engineering and cultivation strategies for recombinant production of (R)-3-hydroxybutyrate
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Metabolic engineering and process engineering are two powerful disciplines to design and improve microbial processes for sustainable production of an extensive number of compounds ranging from chemicals to pharmaceuticals. The aim of this thesis was to synergistically combine these two disciplines to improve the production of a model chemical called (R)-3-hydroxybutyrate (3HB), which is a medium-value product with a stereocenter and two functional groups. These features make 3HB an interesting building block, especially for the pharmaceutical industry. Recombinant production of 3HB was achieved by expression of two enzymes from Halomonas boliviensis in the model microorganism Escherichia coli, which is a microbial cell factory with proven track record and abundant knowledge on its genome, metabolism and physiology.Investigations on cultivation strategies demonstrated that nitrogen-depleted conditions had the biggest impact on 3HB yields, while nitrogen-limited cultivations predominantly increased 3HB titers and volumetric productivities. To further increase 3HB production, metabolic engineering strategies were investigated to decrease byproduct formation, enhance NADPH availability and improve the overall 3HB-pathway activity. Overexpression of glucose-6-phosphate dehydrogenase (zwf) increased cofactor availability and together with the overexpression of acyl-CoA thioesterase YciA resulted in a 2.7-fold increase of the final 3HB concentration, 52% of the theoretical product yield and a high specific productivity (0.27 g g-1 h-1). In a parallel strategy, metabolic engineering and process design resulted in an E. coli BL21 strain with the hitherto highest reported volumetric 3HB productivity (1.52 g L-1 h-1) and concentration (16.3 g L-1) using recombinant production. The concepts developed in this thesis can be applied to industrial 3HB production processes, but also advance the knowledge base to benefit design and expansion of the product range of biorefineries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy