SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perheentupa A.) "

Sökning: WFRF:(Perheentupa A.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Smith, C. J. A., et al. (författare)
  • TSGA10-A Target for Autoantibodies in Autoimmune Polyendocrine Syndrome Type 1 and Systemic Lupus Erythematosus
  • 2011
  • Ingår i: Scandinavian Journal of Immunology. - : Wiley. - 0300-9475 .- 1365-3083. ; 73:2, s. 147-153
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS1) is a rare monogenic autoimmune disorder caused by mutations in the autoimmune regulator (AIRE) gene. High-titre autoantibodies are a characteristic feature of APS1 and are often associated with particular disease manifestations. Pituitary deficits are reported in approximately 7% of APS1 patients, with immunoreactivity to pituitary tissue frequently described. Using APS1 patient serum to immunoscreen a pituitary cDNA expression library, testis specific, 10 (TSGA10) was isolated. Immunoreactivity against TSGA10 was detected in 5/99 (5.05%) patients with APS1, but also in 5/135 (3.70%) systemic lupus erythematosus (SLE) patients and 1/188 (0.53%) healthy controls. TSGA10 autoantibodies were not detected in the serum from patients with any other autoimmune disease. Autoantibodies against TSGA10 were detectable from a young age in 4/5 positive APS1 patients with autoantibody titres remaining relatively constant over time. Furthermore, real-time PCR confirmed TSGA10 mRNA to be most abundantly expressed in the testis and also showed moderate and low expression levels throughout the entire body. TSGA10 should be considered as an autoantigen in a subset of APS1 patients and also in a minority of SLE patients. No recognizable clinical phenotype could be found to correlate with positive autoantibody reactivity.
  •  
2.
  • Vehmas, A. P., et al. (författare)
  • Ovarian Endometriosis Signatures Established through Discovery and Directed Mass Spectrometry Analysis
  • 2014
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 13:11, s. 4983-4994
  • Tidskriftsartikel (refereegranskat)abstract
    • New molecular information on potential therapeutic targets or tools for noninvasive diagnosis for endometriosis are important for patient care and treatment. However, surprisingly few efforts have described endometriosis at the protein level. In this work we enumerate the proteins in patient endometrium and ovarian endometrioma by extensive and comprehensive analysis of minute amounts of cryosectioned tissues in a three-tiered mass spectrometric approach. Quantitative comparison of the tissues revealed 214 differentially expressed proteins in ovarian endometrioma and endometrium. These proteins are reported here as a resource of SRM (selected reaction monitoring) assays that are unique, standardized, and openly available. Pathway analysis of the proteome measurements revealed a potential role for Transforming growth factor beta-1 in ovarian endometriosis development. Subsequent mRNA microarray analysis further revealed clear ovarian endometrioma specificity for a subset of these proteins, which was also supported by further in silico studies. In this process two important proteins emerged, Calponin-1 and EMILIN-1, that were additionally confirmed in ovarian endometrioma tissues by immunohistochemistry and Western blotting. This study provides the most comprehensive molecular description of ovarian endometriosis to date and researchers with new molecular methods and tools for high throughput patient screening using the SRM assays.
  •  
3.
  • Alimohammadi, Mohammad, et al. (författare)
  • Autoimmune Polyendocrine Syndrome Type 1 : NALP5 in Autoimmune Polyendocrine Syndrome Type 1
  • 2006
  • Ingår i: The New England Journal of Medicine. ; 358:10, s. 1018-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disorder caused by mutations in AIRE, the autoimmune regulator gene. Though recent studies concerning AIRE deficiency have begun to elucidate the molecular pathogenesis of organ-specific autoimmunity in patients with APS-1, the autoantigen responsible for hypoparathyroidism, a hallmark of APS-1 and its most common autoimmune endocrinopathy, has not yet been identified. Methods We performed immunoscreening of a human parathyroid complementary DNA library, using serum samples from patients with APS-1 and hypoparathyroidism, to identify patients with reactivity to the NACHT leucine-rich-repeat protein 5 (NALP5). Subsequently, serum samples from 87 patients with APS-1 and 293 controls, including patients with other autoimmune disorders, were used to determine the frequency and specificity of autoantibodies against NALP5. In addition, the expression of NALP5 was investigated in various tissues. Results NALP5-specific autoantibodies were detected in 49% of the patients with APS-1 and hypoparathyroidism but were absent in all patients with APS-1 but without hypoparathyroidism, in all patients with other autoimmune endocrine disorders, and in all healthy controls. NALP5 was predominantly expressed in the cytoplasm of parathyroid chief cells. Conclusions NALP5 appears to be a tissue-specific autoantigen involved in hypoparathyroidism in patients with APS-1. Autoantibodies against NALP5 appear to be highly specific and may be diagnostic for this prominent component of APS-1.
  •  
4.
  • Alimohammadi, Mohammad, et al. (författare)
  • Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen
  • 2008
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 358:10, s. 1018-1028
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disorder caused by mutations in AIRE, the autoimmune regulator gene. Though recent studies concerning AIRE deficiency have begun to elucidate the molecular pathogenesis of organ-specific autoimmunity in patients with APS-1, the autoantigen responsible for hypoparathyroidism, a hallmark of APS-1 and its most common autoimmune endocrinopathy, has not yet been identified. METHODS: We performed immunoscreening of a human parathyroid complementary DNA library, using serum samples from patients with APS-1 and hypoparathyroidism, to identify patients with reactivity to the NACHT leucine-rich-repeat protein 5 (NALP5). Subsequently, serum samples from 87 patients with APS-1 and 293 controls, including patients with other autoimmune disorders, were used to determine the frequency and specificity of autoantibodies against NALP5. In addition, the expression of NALP5 was investigated in various tissues. RESULTS: NALP5-specific autoantibodies were detected in 49% of the patients with APS-1 and hypoparathyroidism but were absent in all patients with APS-1 but without hypoparathyroidism, in all patients with other autoimmune endocrine disorders, and in all healthy controls. NALP5 was predominantly expressed in the cytoplasm of parathyroid chief cells. CONCLUSIONS: NALP5 appears to be a tissue-specific autoantigen involved in hypoparathyroidism in patients with APS-1. Autoantibodies against NALP5 appear to be highly specific and may be diagnostic for this prominent component of APS-1.
  •  
5.
  • Gabriel, M., et al. (författare)
  • A relational database to identify differentially expressed genes in the endometrium and endometriosis lesions
  • 2020
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Endometriosis is a common inflammatory estrogen-dependent gynecological disorder, associated with pelvic pain and reduced fertility in women. Several aspects of this disorder and its cellular and molecular etiology remain unresolved. We have analyzed the global gene expression patterns in the endometrium, peritoneum and in endometriosis lesions of endometriosis patients and in the endometrium and peritoneum of healthy women. In this report, we present the EndometDB, an interactive web-based user interface for browsing the gene expression database of collected samples without the need for computational skills. The EndometDB incorporates the expression data from 115 patients and 53 controls, with over 24000 genes and clinical features, such as their age, disease stages, hormonal medication, menstrual cycle phase, and the different endometriosis lesion types. Using the web-tool, the end-user can easily generate various plot outputs and projections, including boxplots, and heatmaps and the generated outputs can be downloaded in pdf-format.
  •  
6.
  • Heinosalo, T., et al. (författare)
  • Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis
  • 2018
  • Ingår i: Human Reproduction. - : Oxford University Press (OUP). - 0268-1161 .- 1460-2350. ; 33:5, s. 817-831
  • Tidskriftsartikel (refereegranskat)abstract
    • STUDY QUESTION: What is the role of SFRP2 in endometriosis? SUMMARY ANSWER: SFRP2 acts as a canonical WNT/CTNNBI signaling agonist in endometriosis, regulating endometriosis lesion growth and indicating endometriosis lesion borders together with CTNNBI (also known as beta catenin). WHAT IS KNOWN ALREADY: Endometriosis is a common, chronic disease that affects women of reproductive age, causing pain and infertility, and has significant economic impact on national health systems. Despite extensive research, the pathogenesis of endometriosis is poorly understood, and targeted medical treatments are lacking. WNT signaling is dysregulated in various human diseases, but its role in extraovarian endometriosis has not been fully elucidated. STUDY DESIGN, SIZE, DURATION: We evaluated the significance of WNT signaling, and especially secreted frizzled-related protein 2 (SFRP2), in extraovarian endometriosis, including peritoneal and deep lesions. The study design was based on a cohort of clinical samples collected by laparoscopy or curettage and questionnaire data from healthy controls and endometriosis patients. PARTICIPANTS/MATERIALS, SETTING, METHODS: Global gene expression analysis in human endometrium ( n = 104) and endometriosis (n = 177) specimens from 47 healthy controls and 103 endometriosis patients was followed by bioinformatics and supportive qPCR analyses. Immunohistochemistry, Western blotting, primary cell culture and siRNA knockdown approaches were used to validate the findings. MAIN RESULTS AND THE ROLE OF CHANCE: Among the 220 WNT signaling and CTNNBI target genes analysed, 184 genes showed differential expression in extraovarian endometriosis (P < 0.05) compared with endometrium tissue, including SFRP2 and CTNNI. Menstrual cycle-dependent regulation of WNT genes observed in the endometrium was lost in endometriosis lesions, as shown by hierarchical clustering. Immunohistochemical analysis indicated that SFRP2 and CTNNBI are novel endometriosis lesion border markers, complementing immunostaining for the known marker CD10 (also known as MME). SFRP2 and CTNNBI localized similarly in both the epithelium and stroma of extraovarian endometriosis tissue, and interestingly, both also indicated an additional distant lesion border, suggesting that WNT signaling is altered in the endometriosis stroma beyond the primary border indicated by the known marker CD10. SFRP2 expression was positively associated with pain symptoms experienced by patients (P < 0.05), and functional loss of SFRP2 in extraovarian endometriosis primary cell cultures resulted in decreased cell proliferation (P < 0.05) associated with reduced CTNNBI protein expression (P = 0.05). LIMITATIONS REASONS FOR CAUTION: SFRP2 and CTNNBI improved extraovarian endometriosis lesion border detection in a relatively small cohort (n = 20), although larger studies with different endometriosis subtypes in variable cycle phases and under hormonal medication are required. WIDER IMPLICATIONS OF THE FINDINGS: The highly expressed SFRP2 and CTNNBI improve endometriosis lesion border detection, which can have clinical implications for better visualization of endometriosis lesions over CD10. Furthermore, SFRP2 acts as a canonical WNT/CTNNBI signaling agonist in endometriosis and positively regulates endometriosis lesion growth, suggesting that the WNT pathway may be an important therapeutic target for endometriosis.
  •  
7.
  • Landegren, N, et al. (författare)
  • AIREing out autoimmunity
  • 2015
  • Ingår i: SCIENCE TRANSLATIONAL MEDICINE. - 1946-6234. ; 7:292
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Smith-Anttila, Casey J. A., et al. (författare)
  • Identification of endothelin-converting enzyme-2 as an autoantigen in autoimmune polyendocrine syndrome type 1
  • 2017
  • Ingår i: Autoimmunity. - : Informa UK Limited. - 0891-6934 .- 1607-842X. ; 50:4, s. 223-231
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS1) is a rare monogenic autoimmune disorder caused by mutations in the autoimmune regulator (AIRE) gene. High titer autoantibodies are a characteristic feature of APS1 and are often associated with particular disease manifestations. Pituitary deficits are reported in up to 7% of all APS1 patients, with immunoreactivity to pituitary tissue frequently reported. We aimed to isolate and identify specific pituitary autoantigens in patients with APS1. Immunoscreening of a pituitary cDNA expression library identified endothelin-converting enzyme (ECE)-2 as a potential candidate autoantigen. Immunoreactivity against ECE-2 was detected in 46% APS1 patient sera, with no immunoreactivity detectable in patients with other autoimmune disorders or healthy controls. Quantitative-PCR showed ECE-2 mRNA to be most abundantly expressed in the pancreas with high levels also in the pituitary and brain. In the pancreas ECE-2 was co-expressed with insulin or somatostatin, but not glucagon and was widely expressed in GH producing cells in the guinea pig pituitary. The correlation between immunoreactivity against ECE-2 and the major recognized clinical phenotypes of APS1 including hypopituitarism was not apparent. Our results identify ECE-2 as a specific autoantigen in APS1 with a restricted neuroendocrine distribution.
  •  
9.
  •  
10.
  • Bensing, Sophie, et al. (författare)
  • Pituitary autoantibodies in autoimmune polyendocrine syndrome type 1
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:3, s. 949-954
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type 1 (APS1) is a rare autosomal recessive disorder caused by mutations in the autoimmune regulator (AIRE) gene. High titer autoantibodies (Aabs) toward intracellular enzymes are a hallmark for APS1 and serve as diagnostic markers and predictors for disease manifestations. In this study, we aimed to identify pituitary autoantigens in patients with APS1. A pituitary cDNA expression library was screened with APS1 sera and a tudor domain containing protein 6 (TDRD6) cDNA clone was isolated. Positive immunoreactivity against in vitro translated TDRD6 fragments was shown in 42/86 (49%) APS1 patients but not in patients with other autoimmune diseases or in healthy controls. By using immunohistochemistry, sera from 3/6 APS1 patients with growth hormone (GH) deficiency showed immunostaining of a small number of guinea pig anterior pituitary cells, and 40-50% of these cells were GH-positive. No such immunostaining was seen with sera from healthy controls. The APS1 Aab-positive, GH-negative cells may represent a novel subpopulation of anterior pituitary cells. In addition, 4/6 patient sera showed staining of a fiber-plexus in the pituitary intermediate lobe recognizing enzymes of monoamine and GABA synthesis. Thus, we have identified TDRD6 as a major autoantigen in APS1 patients and shown that several sera from GH-deficient patients stain specific cell populations and nerves in the pituitary gland.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy