SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perrakis Anastassis) "

Sökning: WFRF:(Perrakis Anastassis)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agirre, Jon, et al. (författare)
  • The CCP4 suite: integrative software for macromolecular crystallography
  • 2023
  • Ingår i: Acta Crystallographica Section D. - : INT UNION CRYSTALLOGRAPHY. - 2059-7983. ; 79, s. 449-461
  • Tidskriftsartikel (refereegranskat)abstract
    • The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.
  •  
2.
  • Altincekic, Nadide, et al. (författare)
  • Targeting the Main Protease (Mpro, nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies
  • 2024
  • Ingår i: ACS Chemical Biology. - : American Chemical Society (ACS). - 1554-8929 .- 1554-8937. ; 19:2, s. 563-574
  • Tidskriftsartikel (refereegranskat)abstract
    • The main protease Mpro, nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro. These investigations resulted in the four-armed compound 35b that binds directly to Mpro. 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.
  •  
3.
  • Cohen, Serge X., et al. (författare)
  • Towards complete validated models in the next generation of ARP/wARP
  • 2004
  • Ingår i: Acta Crystallographica Section D. - 0907-4449 .- 1399-0047. ; 60:Pt 12 Pt 1, s. 2222-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The design of a new versatile control system that will underlie future releases of the automated model-building package ARP/wARP is presented. A sophisticated expert system is under development that will transform ARP/wARP from a very useful model-building aid to a truly automated package capable of delivering complete, well refined and validated models comparable in quality to the result of intensive manual checking, rebuilding, hypothesis testing, refinement and validation cycles of an experienced crystallographer. In addition to the presentation of this control system, recent advances, ideas and future plans for improving the current model-building algorithms, especially for completing partially built models, are presented. Furthermore, a concept for integrating validation routines into the iterative model-building process is also presented.
  •  
4.
  • Heidebrecht, Tatjana, et al. (författare)
  • Binding of the J-binding protein to DNA containing glucosylated hmU (base J) or 5-hmC : evidence for a rapid conformational change upon DNA binding
  • 2012
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 134:32, s. 13357-13365
  • Tidskriftsartikel (refereegranskat)abstract
    • Base J (β-D-glucosyl-hydroxymethyluracil) was discovered in the nuclear DNA of some pathogenic protozoa, such as trypanosomes and Leishmania, where it replaces a fraction of base T. We have found a J-Binding Protein 1 (JBP1) in these organisms, which contains a unique J-DNA binding domain (DB-JBP1) and a thymidine hydroxylase domain involved in the first step of J biosynthesis. This hydroxylase is related to the mammalian TET enzymes that hydroxylate 5-methylcytosine in DNA. We have now studied the binding of JBP1 and DB-JBP1 to oligonucleotides containing J or glucosylated 5-hydroxymethylcytosine (glu-5-hmC) using an equilibrium fluorescence polarization assay. We find that JBP1 binds glu-5-hmC-DNA with an affinity about 40-fold lower than J-DNA (~400 nM), which is still 200 times higher than the JBP1 affinity for T-DNA. The discrimination between glu-5-hmC-DNA and T-DNA by DB-JBP1 is about 2-fold less, but enough for DB-JBP1 to be useful as a tool to isolate 5-hmC-DNA. Pre-steady state kinetic data obtained in a stopped-flow device show that the initial binding of JBP1 to glucosylated DNA is very fast with a second order rate constant of 70 μM(-1) s(-1) and that JBP1 binds to J-DNA or glu-5-hmC-DNA in a two-step reaction, in contrast to DB-JBP1, which binds in a one-step reaction. As the second (slower) step in binding is concentration independent, we infer that JBP1 undergoes a conformational change upon binding to DNA. Global analysis of pre-steady state and equilibrium binding data supports such a two-step mechanism and allowed us to determine the kinetic parameters that describe it. This notion of a conformational change is supported by small-angle neutron scattering experiments, which show that the shape of JBP1 is more elongated in complex with DNA. The conformational change upon DNA binding may allow the hydroxylase domain of JBP1 to make contact with the DNA and hydroxylate T's in spatial proximity, resulting in regional introduction of base J into the DNA.
  •  
5.
  • Hiruma, Yoshitaka, et al. (författare)
  • Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
  • 2015
  • Ingår i: Science. - Washington, DC, United States : American Association for the Advancement of Science (A A A S). - 0036-8075 .- 1095-9203. ; 348:6240, s. 1264-1267
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.
  •  
6.
  • Nijenhuis, Wilco, et al. (författare)
  • A TPR domain-containing N-terminal module of MPS1 is required for its kinetochore localization by Aurora B
  • 2013
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 201:2, s. 217-231
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.
  •  
7.
  • Read, Randy J., et al. (författare)
  • A New Generation of Crystallographic Validation Tools for the Protein Data Bank
  • 2011
  • Ingår i: Structure. - : Elsevier BV. - 0969-2126 .- 1878-4186. ; 19:10, s. 1395-1412
  • Tidskriftsartikel (refereegranskat)abstract
    • This report presents the conclusions of the X-ray Validation Task Force of the worldwide Protein Data Bank (PDB). The PDB has expanded massively since current criteria for validation of deposited structures were adopted, allowing a much more sophisticated understanding of all the components of macromolecular crystals. The size of the PDB creates new opportunities to validate structures by comparison with the existing database, and the now-mandatory deposition of structure factors creates new opportunities to validate the underlying diffraction data. These developments highlighted the need for a now assessment of validation criteria. The Task Force recommends that a small set of validation data be presented in an easily understood format, relative to both the full PDB and the applicable resolution class, with greater detail available to interested users. Most importantly, we recommend that referees and editors judging the quality of structural experiments have access to a concise summary of well-established quality indicators.
  •  
8.
  • Staring, Jacqueline, et al. (författare)
  • PLA2G16 represents a switch between entry and clearance of Picornaviridae
  • 2017
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 541:7637, s. 412-416
  • Tidskriftsartikel (refereegranskat)abstract
    • Picornaviruses are a leading cause of human and veterinary infections that result in various diseases, including polio and the common cold. As archetypical non-enveloped viruses, their biology has been extensively studied. Although a range of different cell-surface receptors are bound by different picornaviruses, it is unclear whether common host factors are needed for them to reach the cytoplasm. Using genome-wide haploid genetic screens, here we identify the lipid-modifying enzyme PLA2G16 (refs 8, 9, 10, 11) as a picornavirus host factor that is required for a previously unknown event in the viral life cycle. We find that PLA2G16 functions early during infection, enabling virion-mediated genome delivery into the cytoplasm, but not in any virion-assigned step, such as cell binding, endosomal trafficking or pore formation. To resolve this paradox, we screened for suppressors of the ΔPLA2G16 phenotype and identified a mechanism previously implicated in the clearance of intracellular bacteria. The sensor of this mechanism, galectin-8 (encoded by LGALS8), detects permeated endosomes and marks them for autophagic degradation, whereas PLA2G16 facilitates viral genome translocation and prevents clearance. This study uncovers two competing processes triggered by virus entry: activation of a pore-activated clearance pathway and recruitment of a phospholipase to enable genome release.
  •  
9.
  • Suijkerbuijk, Saskia J E, et al. (författare)
  • The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase
  • 2012
  • Ingår i: Developmental Cell. - Cambridge, United States : Cell Press. - 1534-5807 .- 1878-1551. ; 22:6, s. 1321-1329
  • Tidskriftsartikel (refereegranskat)abstract
    • Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive. In one exception, vertebrate BUBR1-defined by the KEN box-preserved the kinase domain but allowed nonconserved degeneration of catalytic motifs. Although BUBR1 evolved to a typical pseudokinase in some vertebrates, it retained the catalytic triad in humans. However, we show that putative catalysis by human BUBR1 is dispensable for error-free chromosome segregation. Instead, residues that interact with ATP in conventional kinases are essential for conformational stability in BUBR1. We propose that parallel evolution of BUBR1 orthologs rendered its kinase function dispensable in vertebrates, producing an unusual, triad-containing pseudokinase.
  •  
10.
  • Wehlin, Anna, et al. (författare)
  • Crystal structure of the phospholipase A and acyltransferase 4 (PLAAT4) catalytic domain
  • 2022
  • Ingår i: Journal of Structural Biology. - : Academic Press Inc - Elsevier Science. - 1047-8477 .- 1095-8657. ; 214:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Phospholipase A and Acyltransferase 4 (PLAAT4) is a class II tumor suppressor, that also plays a role as a restrictor of intracellular Toxoplasma gondii infection through restriction of parasitic vacuole size. The catalytic N-terminal domain (NTD) interacts with the C-terminal domain (CTD), which is important for sub-cellular tar-geting and enzymatic function. The dynamics of the NTD main (L1) loop and the L2(B6) loop adjacent to the active site, have been shown to be important regulators of enzymatic activity. Here, we present the crystal structure of PLAAT4 NTD, determined from severely intergrown crystals using automated, laser-based crystal harvesting and data reduction technologies. The structure showed the L1 loop in two distinct conformations, highlighting a complex network of interactions likely influencing its conformational flexibility. Ensemble refinement of the crystal structure recapitulates the major correlated motions observed in solution by NMR. Our analysis offers useful insights on millisecond dynamics based on the crystal structure, complementing NMR studies which preclude structural information at this time scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy