SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perret Gregory) "

Sökning: WFRF:(Perret Gregory)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hursin, Mathieu, et al. (författare)
  • Measurement of the gas velocity in a water-air mixture in crocus by neutron noise technique
  • 2019
  • Ingår i: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019. ; , s. 2696-2703
  • Konferensbidrag (refereegranskat)abstract
    • © 2019 American Nuclear Society. All rights reserved. The possibility to measure the gas phase velocity in a two-component mixture with neutron noise techniques is demonstrated in the zero-power reactor CROCUS of the Ecole Polytechnique Federale de Lausanne. It is the first step toward the experimental validation of a theoretical method aiming at the reconstruction of the void profile in a BWR channel. For this experiment, a channel is installed in the water reflector of CROCUS and two-component mixtures are generated inside the channel through injection of air at various flow rates. The signal fluctuations of two neutron detectors located at different elevations next to the channel are recorded and their Cross Power Spectral Density analyzed with various techniques to determine the transit time of the gas phase and its velocity. Experimental results are compared with predictions obtained with the TRACE thermal-hydraulic code. Results disagree in their magnitudes but the evolution of the gas velocity with the air injection rate are similar.
  •  
2.
  • Hursin, Mathieu, et al. (författare)
  • Measurement of the Gas Velocity in a Water-Air Mixture in CROCUS Using Neutron Noise Techniques
  • 2020
  • Ingår i: Nuclear Technology. - : Informa UK Limited. - 0029-5450 .- 1943-7471. ; 206:10, s. 1566-1583
  • Tidskriftsartikel (refereegranskat)abstract
    • The possibility of measuring the gas-phase velocity in a two-phase mixture through the use of neutron noise techniques is demonstrated in the zero-power reactor CROCUS of the Ecole Polytechnique Federale de Lausanne. It is the first step toward the experimental validation of an existing theoretical model whose objective is the reconstruction of the void profile in a channel. The use of zero-power research reactors is advantageous due to their clean environment in terms of signal fluctuations. To this end, a channel was installed in the reflector of CROCUS. A two-component mixture is generated inside the channel through the injection of compressed air. The signal fluctuations of neutron detectors located at various axial locations next to the channel are processed to determine the transit time of the gas phase between detectors. Four methods are presented based on the detector signal time series either in the time domain (time correlations between signals) or in the frequency domain (phase of the cross-power spectral density. All four methods returned consistent transit times and similar experimental uncertainty. The largest possible gas injection rates as well as the highest possible neutron flux level improve the visibility of the traveling perturbation and reduce the experimental uncertainty on the transit time for a given acquisition time. © 2020, © 2020 American Nuclear Society.
  •  
3.
  • Hursin, Mathieu, et al. (författare)
  • Validation of axial void profile measured by neutron noise techniques in crocus
  • 2020
  • Ingår i: International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020. - : EDP Sciences. ; 2020-March, s. 1586-1593
  • Konferensbidrag (refereegranskat)abstract
    • Recently a joint project has been carried out between the Paul Scherrer Institut, the Ecole Polytechnique Federale de Lausanne and swissnuclear, an industrial partner, in order to determine the axial void distribution in a channel installed in the reflector of the zero power research reactor CROCUS, using neutron noise techniques. The main objective of the present paper is to report on the validation of the results against an alternative measurement technique using gamma-ray attenuation and simulations with the TRACE code. For the gamma-ray attenuation experiments, the channel used in CROCUS is installed out of the core in a Plexiglass water tank. The source and detector are fixed and the channel is moved axially to keep the geometry of the source/detector arrangement untouched. This is key to measure the void effect by gamma attenuation due to the low contrast of this technique. The paper compares the experimental results obtained with both techniques, with the outcomes of simulations carried out with the TRACE code. Even though the quantitative void fraction estimations are not consistent, the trends obtained with the simulation and experimental techniques are the same. The discrepancies between the various experimental techniques and the simulation outcomes are related to the heterogeneous distribution of the water-air mixture in the radial sections of the channel.
  •  
4.
  • Mylonakis, Antonios, 1987, et al. (författare)
  • CORE SIM+ simulations of COLIBRI fuel rods oscillation experiments and comparison with measurements
  • 2020
  • Ingår i: International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future, PHYSOR 2020. - : EDP Sciences. ; 2020-March, s. 2930-2938
  • Konferensbidrag (refereegranskat)abstract
    • At EPFL, the CROCUS reactor has been used to carry out experiments with vibrating fuel rods. The paper presents a first attempt to employ the measured data to validate CORE SIM+, a neutron noise solver developed at Chalmers University of Technology. For this purpose, the original experimental data are processed in order to extract the necessary information. In particular, detector recordings are scrutinized and detrended, and used to estimate CPSDs of detector pairs. These values are then compared with the ones derived from the CORE SIM+ simulations of the experiments. The main trend of the experimental data along with the values for some detectors are successfully reproduced by CORE SIM+. Further work is necessary on both the experimental and computational sides in order to improve the validation process.
  •  
5.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy