SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Perruchot Christian) "

Sökning: WFRF:(Perruchot Christian)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ellis, Hanna, et al. (författare)
  • PEDOT counter electrodes for dye-sensitized solar cells prepared by aqueous micellar electrodeposition
  • 2013
  • Ingår i: Electrochimica Acta. - : Elsevier BV. - 0013-4686 .- 1873-3859. ; 107, s. 45-51
  • Tidskriftsartikel (refereegranskat)abstract
    • Electropolymerization of 3,4-ethylenedioxythiophene (EDOT) was performed in an aqueous micellar solution onto conducting glass and conducting flexible plastic substrates using a simple, scalable process. The background electrolyte in the process consisted merely of a micellar aqueous sodium dodecyl sulfate (SDS) solution. Electrodeposition of poly(3,4-ethylenedioxythiophene) (PEDOT) was conducted at constant current, resulting in homogeneous films, even on large sized conducting glass and plastic substrates (9 cm x 9 cm). The use of water as electrolyte, application on large substrates and applicability on flexible plastic substrates demonstrates the feasibility of this method for upscaling and use in industrial fabrication of DSCs. DSCs were assembled using three different PEDOT thicknesses on conducting glass as counter electrodes and a comparison was made with thermally platinized conducting glass counter electrodes. In cobalt tris(bipyridine)-based electrolyte, the catalytic performance of the PEDOT counter electrodes was significantly higher than that of platinized counter electrodes. DSCs with PEDOT counter electrodes gave higher efficiencies due to higher fill factors and a lower charge transfer resistance. The low charge transfer resistance and good catalytic performance of the PEDOT counter electrodes can be related to its mesoporous morphology resembling crumpled sheets of paper. 
  •  
2.
  • Park, Byung-wook, et al. (författare)
  • Neutral, Polaron, and Bipolaron States in PEDOT Prepared by Photoelectrochernical Polymerization and the Effect on Charge Generation Mechanism in the Solid-State Dye-Sensitized Solar Cell
  • 2013
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:44, s. 22484-22491
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigate dye-sensitized solar cells (DSSCs) based on PEDOT as hole conductor and prepared by photoelectrochemical polymer deposition at different light intensities. We specifically investigate the effect of light intensity on the PEDOT polymer and in turn the efficiency of the solar cells. We find that the PEDOT prepared by this method is largely oxidized and contains significant amounts of polarons and bipolarons and only a small fraction of neutral PEDOT. Photoelectrochemical polymer deposition under low light intensity leads to a particularly low fraction of neutral PEDOT and a high fraction of bipolarons as measured in the UV-vis spectra. The solar cells based on PEDOT as a hole conductor prepared under these conditions are the most efficient with a higher power conversion efficiency, which can be explained by a longer electron lifetime, faster charge transport, and higher transparency of the PEDOT. Interestingly, we conclude that in this type of solid-state DSSCs the mechanism of dye regeneration occurs from PEDOT polarons that then form bipolarons, which is different from the mechanism of dye regeneration proposed in standard solid-state DSSCs.
  •  
3.
  • Yang, Lei, et al. (författare)
  • New Approach for Preparation of Efficient Solid-State Dye-Sensitized Solar Cells by Photoelectrochemical Polymerization in Aqueous Micellar Solution
  • 2013
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 4:23, s. 4026-4031
  • Tidskriftsartikel (refereegranskat)abstract
    • Hereby, we present a new, cost-effective, and environmentally friendly method of preparing an efficient solid-state dye-sensitized solar cell (sDSC) using a PEDOT conducting polymer as the hole conductor and a recently developed organic sensitizer. PEDOT is generated and deposited on the dye-sensitized TiO2 electrode by in situ photoelectropolymerization of bis-EDOT in aqueous micellar solution. The advantages of this approach are the use of water as the solvent and the obtainment of a sDSC simply by adding a silver layer on the as-obtained polymer film deposited on dye/TiO2 without the need for electrolytic solution. The sDSC containing the film prepared as above is compared to those where the organic dye is used to generate the same polymer film but in organic solvent. The energy conversion efficiency values of the two cells appear comparable, 4.8% for sDSC prepared in the aqueous-phase polymerized PEDOT and 6% for the sDSC prepared with in organic-phase polymerized PEDOT.
  •  
4.
  • Zhang, Jinbao, et al. (författare)
  • Poly(3,4-ethylenedioxythiophene) Hole-Transporting Material Generated by Photoelectrochemical Polymerization in Aqueous and Organic Medium for All-Solid-State Dye-Sensitized Solar Cells
  • 2014
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:30, s. 16591-16601
  • Tidskriftsartikel (refereegranskat)abstract
    • We applied organic donor-pi-acceptor (D-pi-A) sensitizers for photoelectrochemical polymerization (PEP) because of their appropriate energy levels and high light absorption. The polymerized conducting polymer PEDOT was used as hole conductor in all-solid-state dye-sensitized solar cells (ssDSCs). By combination of the D-pi-A sensitizers and the generated PEDOT from PEP of bis-EDOT in acetonitrile, the resulting device showed an average power conversion efficiency of 5.6%. Furthermore, the PEP in aqueous micellar electrolytic medium was also employed because of the ability to decrease oxidation potential of the precursor, thereby making the polymerization process easier. The latter method is a cost-effective and environmentally friendly approach. Using as hole conductor the so-obtained PEDOT from PEP of bis-EDOT in aqueous electrolyte, the devices exhibited impressive power conversion efficiency of 5.2%. To compare the properties of the generated polymer from bis-EDOT in these two PEP methods, electron lifetime, photoinduced absorption (PIA) spectra, and UV-vis-NIR spectra were measured. The results showed that PEDOT from organic PEP exhibits a delocalized conformation with high conductivity and a smooth and compact morphology; a rough morphology with high porosity and polymer structure of relatively shorter chains was assumed to be obtained from aqueous PEP. Therefore, better dye regeneration but faster charge recombination was observed in the device based on PEDOT from aqueous PEP of bis-EDOT. Subsequently, to extend the aqueous PEP approach in consideration of the ability to decrease the oxidation potential of the precursor, the easily available precursor EDOT was for the first time used for PEP in aqueous medium in a variant of the aforementioned procedure, and the device based on the so-obtained PEDOT shows a more than 70-fold increase in efficiency, 3.0%, over that based on the polymer generated from EDOT by PEP in organic media. It was demonstrated that aqueous micellar PEP with EDOT as monomer is an efficient strategy for generation of conducting polymer hole-transporting materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy