SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persoon A.) "

Sökning: WFRF:(Persoon A.)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lewis, G. R., et al. (författare)
  • The calibration of the Cassini-Huygens CAPS Electron Spectrometer
  • 2010
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633 .- 1873-5088. ; 58:3, s. 427-436
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the two-stage method used to calibrate the electron spectrometer (ELS), part of the plasma spectrometer (CAPS) on board the Cassini spacecraft currently in orbit around Saturn. The CAPS-ELS is a top-hat electrostatic analyser designed to measure electron fluxes between 0 5 eV and 26 keV The on-ground calibration method described here includes the production of photoelectrons, which are energised and passed into the CAPS-ELS in a purpose designed calibration facility. Knowledge of the intensity of these incident electrons and the subsequent instrument output provides an on-ground calibrated geometric factor. Comparative studies of physical quantities such as plasma density and electron differential flux calculated using on-ground calibration factor with the quantities deduced from the wave experiment and high energy electron detector provide in-flight calibration. The results of this are presented together with a comparison of the experimentally calibrated values with simulated calibration values.
  •  
2.
  • Farrell, W. M., et al. (författare)
  • Saturn's Plasma Density Depletions Along Magnetic Field Lines Connected to the Main Rings
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:16, s. 8104-8110
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a set of clear and abrupt decreases in the high-frequency boundary of whistler mode emissions detected by Cassini at high latitudes (about +/- 40 degrees) during the low-altitude proximal flybys of Saturn. These abrupt decreases or dropouts have start and stop locations that correspond to L shells at the edges of the A and B rings. Langmuir probe measurements can confirm, in some cases, that the abrupt decrease in the high-frequency whistler mode boundary is associated with a corresponding abrupt electron density dropout over evacuated field lines connected to the A and B rings. Wideband data also reveal electron plasma oscillations and whistler mode cutoffs consistent with a low-density plasma in the region. The observation of the electron density dropout along ring-connecting field lines suggests that strong ambipolar forces are operating, drawing cold ionospheric ions outward to fill the flux tubes. There is an analog with the refilling of flux tubes in the terrestrial plasmasphere. We suggest that the ring-connected electron density dropouts observed between 1.1 and 1.3 R-s are connected to the low-density ring plasma cavity observed overtop the A and B rings during the 2004 Saturn orbital insertion pass.Plain Language Summary We present Cassini observations during the close passes by the planet Saturn indicating that plasma on magnetic field lines that pass through the A and B rings is of anomalously low density. These observations are consistent with the Saturn orbit insertion observations of a plasma cavity located at equatorial regions overtop the dense B ring. Using a terrestrial analogy, we suggest that the low-density conditions overtop the rings create an electrical force, called an ambipolar electric field that draws plasma out of the ionosphere in an attempt to replenish the plasma void found at equatorial regions.
  •  
3.
  • Gurnett, D. A., et al. (författare)
  • A plasmapause-like density boundary at high latitudes in Saturn's magnetosphere
  • 2010
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 37, s. L16806-
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report the discovery of a well-defined plasma density boundary at high latitudes in Saturn's magnetosphere. The boundary separates a region of relatively high density at L less than about 8 to 15 from a region with densities nearly three orders of magnitude lower at higher L values. Magnetic field measurements show that strong field-aligned currents, probably associated with the aurora, are located just inside the boundary. Analyses of the anisotropy of energetic electrons show that the magnetic field lines are usually closed inside the boundary and open outside the boundary, although exceptions sometimes occur. The location of the boundary is also modulated at the similar to 10.6 to 10.8 hr rotational period of the planet. Many of these characteristics are similar to those predicted by Brice and Ioannidis for the plasmapause at a strongly magnetized, rapidly rotating planet such as Saturn.
  •  
4.
  • Menietti, J. D., et al. (författare)
  • Analysis of Intense Z-Mode Emission Observed During the Cassini Proximal Orbits
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:14, s. 6766-6772
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of Z-mode emission in the diffusive scattering and resonant acceleration of electrons is believed to be important at Saturn. A survey of the 5kHz component of this emission at Saturn earlier reported strong intensity in the lower density regions where the ratio of plasma frequency to cyclotron frequency, f(p)/f(c)<1. At Saturn this occurs along the inner edge of the Enceladus torus near the equator and at higher latitudes. Using the Cassini Radio and Plasma Wave Science instrument observations during the Cassini proximal orbits, we have now identified these emissions extending down to and within the ionosphere. Wave polarization measurements and unique frequency cutoffs are used to positively identify the wave mode. Analogous to the role of whistler mode chorus at Earth, Saturn Z-mode emissions may interact with electrons contributing to the filling or depleting of Saturn's inner radiation belts.
  •  
5.
  • Morooka, Michiko, et al. (författare)
  • The electron density of Saturn's magnetosphere
  • 2009
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 27:7, s. 2971-2991
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated statistically the electron density below 5 cm(-3) in the magnetosphere of Saturn (7-80 R-S, Saturn radii) using 44 orbits of the floating potential data from the RPWS Langmuir probe (LP) onboard Cassini. The density distribution shows a clear dependence on the distance from the Saturnian rotation axis (root X-2 + Y-2) as well as on the distance from the equatorial plane (vertical bar Z vertical bar), indicating a disc-like structure. From the characteristics of the density distribution, we have identified three regions: the extension of the plasma disc, the magnetodisc region, and the lobe regions. The plasma disc region is at L<15, where L is the radial distance to the equatorial crossing of the dipole magnetic field line, and confined to vertical bar Z vertical bar <5 R-S. The magnetodisc is located beyond L=15, and its density has a large variability. The variability has quasi-periodic characteristics with a periodicity corresponding to the planetary rotation. For Z > 15 R-S, the magnetospheric density distribution becomes constant in Z. However, the density still varies quasi-periodically with the planetary rotation also in this region. In fact, the quasi-periodic variation has been observed all over the magnetosphere beyond L=15. The region above Z=15 R-S is identified as the lobe region. We also found that the magnetosphere can occasionally move latitudinally under the control of the density in the magnetosphere and the solar wind. From the empirical distributions of the electron densities obtained in this study, we have constructed an electron density model of the Saturnian nightside magnetosphere beyond 7 R-S. The obtained model can well reproduce the observed density distribution, and can thus be useful for magnetospheric modelling studies.
  •  
6.
  • Persoon, A. M., et al. (författare)
  • A diffusive equilibrium model for the plasma density in Saturn's magnetosphere
  • 2009
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 114:4, s. A04211-
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron density measurements have been obtained by the Cassini Radio and Plasma Wave Science (RPWS) instrument for more than 50 passes through Saturn's inner magnetosphere from 30 June 2004 to 30 September 2007. The electron densities are derived from RPWS measurements of the upper hybrid resonance frequency and span latitudes up to 35 degrees and L values from 3.6 to 10. The electron density measurements are combined with ion anisotropy measurements from the Cassini Plasma Spectrometer (CAPS) and electron temperature measurements from the RPWS and CAPS to develop a diffusive equilibrium model for the distribution of water group ions, hydrogen ions, and electrons in the inner region of Saturn's magnetosphere. The model uses an analytical solution of the field-aligned force equation, including the ambipolar electric field, to determine the equatorial ion densities and scale heights as a function of L. Density contour plots for water group ions, hydrogen ions, and electrons are presented.
  •  
7.
  • Sulaiman, A. H., et al. (författare)
  • Intense Harmonic Emissions Observed in Saturn's Ionosphere
  • 2017
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 44:24, s. 12049-12056
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cassini spacecraft's first Grand Finale orbit was carried out in April 2017. This set of 22 orbits had an inclination of 63 degrees with a periapsis grazing Saturn's ionosphere, thus providing unprecedented coverage and proximity to the planet. Cassini's Radio and Plasma Wave Science instrument repeatedly detected intense electrostatic waves and their harmonics near closest approach in the dayside equatorial topside ionosphere. The fundamental modes were found to both scale and trend best with the H+ plasma or lower hybrid frequencies, depending on the plasma composition considered. The fine-structured harmonics are unlike previous observations, which scale with cyclotron frequencies. We explore their generation mechanism and show strong evidence of their association with whistler mode waves, consistent with theory. The possibility of Cassini's presence in the ionosphere influencing the resonance and harmonics is discussed. Given their link to the lower hybrid frequency, these emissions may offer clues to constraining Saturn's ionospheric properties.
  •  
8.
  • Ye, S. -Y, et al. (författare)
  • Dust Observations by the Radio and Plasma Wave Science Instrument During Cassini's Grand Finale
  • 2018
  • Ingår i: Geophysical Research Letters. - : AMER GEOPHYSICAL UNION. - 0094-8276 .- 1944-8007. ; 45:19, s. 10101-10109
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust particles in the Saturn system can be detected by the Radio and Plasma Wave Science (RPWS) instrument on board Cassini via antenna voltage signals induced by dust impacts. These impact signals have been simulated in the laboratory by accelerating dust particles onto a Cassini model with electric field antennas. RPWS dust measurements have been shown to be consistent with the Cosmic Dust Analyzer. During the Grand Finale orbits, Cassini flew through the gap between the D ring and Saturn's atmosphere 22 times. In situ measurements by RPWS helped quantify the hazards posed to the spacecraft and instruments on board, which showed a micron-sized dust density orders of magnitude lower than that observed during the Ring Grazing orbits. Close inspection of the waveforms indicated a possible dependence of the impact signal decay time on ambient plasma density. Plain Language Summary Cassini flew through the gap between Saturn and its rings for 22 times before plunging into the atmosphere of Saturn, ending its 20-year mission. The radio and plasma waves instrument on board Cassini helped quantify the dust hazard in this previously unexplored region. The measured density of large dust particles was much lower than expected, allowing high-value science observations during the subsequent Grand Finale orbits.
  •  
9.
  • Cravens, T. E., et al. (författare)
  • Plasma Transport in Saturn's Low-Latitude Ionosphere : Cassini Data
  • 2019
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 124:6, s. 4881-4888
  • Tidskriftsartikel (refereegranskat)abstract
    • In 2017 the Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn. The Ion and Neutral Mass Spectrometer in its ion mode measured densities of light ion species (H+, H-2(+), H-3(+), and He+), and the Radio and Plasma Wave Science instrument measured electron densities. During proximal orbit 287 (denoted P287), Cassini reached down to an altitude of about 3,000 km above the 1 bar atmospheric pressure level. The topside ionosphere plasma densities measured for P287 were consistent with ionospheric measurements during other proximal orbits. Spacecraft potentials were measured by the Radio and Plasma Wave Science Langmuir probe and are typically about negative 0.3 V. Also, for this one orbit, Ion and Neutral Mass Spectrometer was operated in an instrument mode allowing the energies of incident H+ ions to be measured. H+ is the major ion species in the topside ionosphere. Ion flow speeds relative to Saturn's atmosphere were determined. In the southern hemisphere, including near closest approach, the measured ion speeds were close to zero relative to Saturn's corotating atmosphere, but for northern latitudes, southward ion flow of about 3 km/s was observed. One possible interpretation is that the ring shadowing of the southern hemisphere sets up an interhemispheric plasma pressure gradient driving this flow.
  •  
10.
  • Farrell, W. M., et al. (författare)
  • Mass unloading along the inner edge of the Enceladus plasma torus
  • 2008
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 35:2, s. L02203-
  • Tidskriftsartikel (refereegranskat)abstract
    • A major discovery made by the Cassini spacecraft at Saturn was the substantial mass ejection from the south pole of Enceladus. Previous studies show that this ejected gas can become ionized and subsequently load mass onto the connecting magnetic field lines near the moon. Radial diffusion then allows the mass-loaded field lines to move outward to similar to 15 R-s and inward to similar to 2 R-s, forming a plasma torus. We demonstrate herein that the mass is also '' unloaded '' along the inner edge of this plasma torus the edge incident with the plasma-absorbing A-ring. Interpreting down-drifting z-mode tones from active sites along the inner edge of the ion torus as emission near the local electron plasma frequency, f(pe), we can remotely-monitor this reduction in plasma density along the torus inner edge as a function time. We find that the down-drift of the z-mode tones corresponds typically to a plasma density change dn/dt similar to - 5x10(-4)/cm(3)-s and when integrated over an annulus defined by the outer edge of the A-ring, corresponds to a mass loss of similar to 40 kg/s. Using the z-mode tones, we also find locations where plasma mass from the ring-ionosphere is possibly loaded at 1 - 2 kg/s onto field lines near the Cassini gap.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy