SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Jenny L. Professor) "

Sökning: WFRF:(Persson Jenny L. Professor)

  • Resultat 1-10 av 56
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Semenas, Julius, 1987- (författare)
  • Targeted therapeutic strategies for prostate cancer treatment using novel lipid kinase inhibitors in combination with current drugs
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Prostate cancer (PCa) is one of the most common cancer types and the fifth cancer-related cause of death among Western world men.  The sex steroid hormone, androgen and androgen receptor (AR) play important roles in PCa progression. Herewith, androgen deprivation therapy (ADT) is used as a regimen for PCa, but inevitably leads to development of castration-resistant PCa (CRPC) and distant metastasis. No effective treatment for metastatic PCa currently exists. Furthermore, it remains poorly understood whether and how the steroid hormone signaling in cooperation with multiple pathways that control proliferation, survival and invasion of cancer cells may contribute to metastatic dissemination and growth.The aims of my PhD thesis focused on: (i) studying the clinical importance of estrogen- and androgen-related signaling pathways in promoting homing and metastatic growth of PCa cells in bone, (ii) gaining deeper understanding of the underlying mechanisms that facilitate PCa metastasis and treatment resistance, with focus on phosphatidylinositol-4-phosphate 5-kinase type-1 alpha (PIP5K1α), estrogen- and androgen receptor signaling, (iii) testing and characterizing the therapeutic potential of PIP5K1α inhibitor in combination with anti-estrogen or anti-androgen agents to improve treatment and overcome treatment resistance in CRPC.In my thesis work we have shown that key biomarker genes exhibited unique expression profiles and signatures in PCa subtypes within large patient cohorts. Alterations in androgen- and estrogen-related biomarkers and PIP5K1α/Akt pathways were associated with poor patient outcome. We further discovered that CRPC cells and cancer stem-like cells utilized estrogen-associated factors including aromatase and estrogen receptor alpha (ERα), as well as cyclin A1, a key cell cycle regulator, to gain proliferative advantage, and to survive and metastasize to distant organs.We found that the interaction between PIP5K1α and AR splice variant AR-V7 contributed to enzalutamide resistance. In series of in vivo treatment experiments using tumor xenograft mice, we demonstrated that ISA-2011B alone or in combination with enzalutamide had great therapeutic potential to suppress growth of tumors that had elevated levels of PI3K/Akt and AR-V7, and that were resistant to enzalutamide monotherapy.We further showed that combination treatment using tamoxifen together with ISA-2011B selectively blocked elevated ERα/cyclin D1 and PIP5K1α/Akt, leading to tumor regression and had superior inhibitory effect over monotherapy in xenograft mice.My studies therefore suggest that steroid hormone receptors, PIP5K1α signaling cascade and multiple cellular pathways cooperatively promote PCa progression. Taken together, the reported findings are the first to suggest a new therapeutic potential to inhibit or utilize the mechanisms related to ERα and PIP5K1α/Akt network, and provide a new therapeutic strategy to treat castration-resistant ER-positive subtype of tumors with metastatic potential.
  •  
2.
  • Ekberg, Jenny, et al. (författare)
  • Expression of cyclin A1 and cell cycle proteins in hematopoietic cells and acute myeloid leukemia and links to patient outcome
  • 2005
  • Ingår i: European Journal of Haematology. - : Wiley-Blackwell Publishing Inc.. - 0902-4441 .- 1600-0609. ; 75:2, s. 106-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Abnormal expression of several key regulators essential for G1/S transitions has been implicated in tumorigenesis. A critical role of cyclin A1 in the development of acute myeloid leukemia (AML) has previously been demonstrated in transgenic mice. Our present study focused on the expression and prognostic significance of cyclin A1 and a panel of cell cycle regulatory proteins including cyclin A2, cyclin B1, cyclin E, CDK1, CDK2, p21 and p27 in bone marrow samples from 40 patients with AML. Freshly isolated CD34+ hematopoietic cells and bone marrow samples from 10 healthy donors were also assessed for cell type- and subcellular-specific expression of the cell cycle regulatory proteins. The level of cyclin A1 expression was the only factor that showed a significant correlation with patient outcome. In log-rank test stratified by levels of cyclin A1 expression, patients with high levels of cyclin A1 had significantly worse overall survival (OS) (P = 0.012) compared to those with low levels. Further, patients with high levels of cyclin A1 had significantly lower disease-free survival (DFS) (P = 0.028). Multivariate analysis indicated that cyclin A1 protein expression was an independent prognostic factor for predicting DFS (P = 0.035) and OS (P = 0.045). No correlation between cyclin A1 expression and age was found. However, expression of cyclin A2, cyclin B1, cyclin E, CDK1, CDK2, p21 and p27 did not show prognostic significance in these AML patients.
  •  
3.
  • Ekberg, Jenny, et al. (författare)
  • Post-translational modification of cyclin A1 is associated with staurosporine and TNFalpha induced apoptosis in leukemic cells.
  • 2009
  • Ingår i: Molecular and Cellular Biochemistry. - : Springer Science and Business Media LLC. - 0300-8177 .- 1573-4919. ; 320:1-2, s. 115-24
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding of molecular mechanisms underlying the effects of cell cycle proteins in response to the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to chemotherapeutic agents. Staurosporine and tumor necrosis factor alpha (TNFalpha) are the therapeutic agents that inhibit tumor cell growth by inducing cell death. Staurosporine induces apoptosis through the intrinsic pathway, while TNFalpha trigger the cell death via the extrinsic apoptotic pathway. We have previously demonstrated that the cell cycle regulatory protein, cyclin A1 played an important role in the development of acute myeloid leukemia (AML), and cyclin A1 expression correlated with disease characteristics and patient outcome in leukemia. However, it remains unknown how cyclin A1 expression is regulated in leukemic cells treated with the therapeutic agents. Here, we demonstrate that cyclin A1 protein is regulated by proteasome-mediated ubiquitination and degradation in untreated U-937 cells. Interestingly, ubiquitination- and proteasomal-mediated degradation of cyclin A1 is prevented in cells treated with staurosporine or TNFalpha. Induction of apoptosis in U-937 cells by staurosporine or TNFalpha resulted in an increase in cyclin A1 protein expression, which correlated well with cyclin A1 protein modification and the activation of caspase-3. Blocking caspases activity by Z-VAD-FMK had no effect on the increased cyclin A1 expression, suggesting that cyclin A1 might be regulated by caspase-3 independent pathways. We further propose that CDC25C may be associated with cyclin A1 protein modification in response to staurosporine or TNFalpha treatment. Our results suggest that cyclin A1 protein is stabilized via post-transcriptional modification in response to apoptosis induced by staurosporine or TNFalpha.
  •  
4.
  • Ekberg, Jenny, et al. (författare)
  • Regulation of the cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and leukemic cells
  • 2004
  • Ingår i: Oncogene. - : Nature Publishing Group. - 0950-9232 .- 1476-5594. ; 23:56, s. 9082-9089
  • Tidskriftsartikel (refereegranskat)abstract
    • An important role of the cell cycle regulatory protein cyclin A1 in the development of acute myeloid leukemia (AML) was previously demonstrated in a transgenic mouse model. We have now turned our attention to study specific aspects of the activity and subcellular distribution of cyclin A1 using bone marrow samples from normal donors and patients with AML, as well as leukemic cell lines. We show that the localization of cyclin A1 in normal hematopoietic cells is nuclear, whereas in leukemic cells from AML patients and cell lines, it is predominantly cytoplasmic. In leukemic cell lines treated with all-trans retinoic acid (ATRA), cyclin A1 localized to the nucleus. Further, there was a direct interaction between cyclin A1 and cyclin-dependent kinase 1, as well as a major ATRA receptor, RARalpha, in ATRA-treated cells but not in untreated leukemic cells. Our results indicate that the altered intracellular distribution of cyclin A1 in leukemic cells correlates with the status of the leukemic phenotype.
  •  
5.
  •  
6.
  • Haigh, Daisy B., et al. (författare)
  • The METTL3 RNA Methyltransferase Regulates Transcriptional Networks in Prostate Cancer
  • 2022
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 14:20
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer (PCa) is a leading cause of cancer-related deaths and is driven by aberrant androgen receptor (AR) signalling. For this reason, androgen deprivation therapies (ADTs) that suppress androgen-induced PCa progression either by preventing androgen biosynthesis or via AR signalling inhibition (ARSi) are common treatments. The N6-methyladenosine (m6A) RNA modification is involved in regulating mRNA expression, translation, and alternative splicing, and through these mechanisms has been implicated in cancer development and progression. RNA-m6A is dynamically regulated by the METTL3 RNA methyltransferase complex and the FTO and ALKBH5 demethylases. While there is evidence supporting a role for aberrant METTL3 in many cancer types, including localised PCa, the wider contribution of METTL3, and by inference m6A, in androgen signalling in PCa remains poorly understood. Therefore, the aim of this study was to investigate the expression of METTL3 in PCa patients and study the clinical and functional relevance of METTL3 in PCa. It was found that METTL3 is aberrantly expressed in PCa patient samples and that siRNA-mediated METTL3 knockdown or METTL3-pharmacological inhibition significantly alters the basal and androgen-regulated transcriptome in PCa, which supports targeting m6A as a novel approach to modulate androgen signalling in PCa.
  •  
7.
  • Harris, Anna E., et al. (författare)
  • Exploring anti-androgen therapies in hormone dependent prostate cancer and new therapeutic routes for castration resistant prostate cancer
  • 2022
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S.A.. - 1664-2392. ; 13
  • Forskningsöversikt (refereegranskat)abstract
    • Androgen deprivation therapies (ADTs) are important treatments which inhibit androgen-induced prostate cancer (PCa) progression by either preventing androgen biosynthesis (e.g. abiraterone) or by antagonizing androgen receptor (AR) function (e.g. bicalutamide, enzalutamide, darolutamide). A major limitation of current ADTs is they often remain effective for limited durations after which patients commonly progress to a lethal and incurable form of PCa, called castration-resistant prostate cancer (CRPC) where the AR continues to orchestrate pro-oncogenic signalling. Indeed, the increasing numbers of ADT-related treatment-emergent neuroendocrine-like prostate cancers (NePC), which lack AR and are thus insensitive to ADT, represents a major therapeutic challenge. There is therefore an urgent need to better understand the mechanisms of AR action in hormone dependent disease and the progression to CRPC, to enable the development of new approaches to prevent, reverse or delay ADT-resistance. Interestingly the AR regulates distinct transcriptional networks in hormone dependent and CRPC, and this appears to be related to the aberrant function of key AR-epigenetic coregulator enzymes including the lysine demethylase 1 (LSD1/KDM1A). In this review we summarize the current best status of anti-androgen clinical trials, the potential for novel combination therapies and we explore recent advances in the development of novel epigenetic targeted therapies that may be relevant to prevent or reverse disease progression in patients with advanced CRPC.
  •  
8.
  • Metzler, Veronika M., et al. (författare)
  • The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer
  • 2023
  • Ingår i: Frontiers in Cell and Developmental Biology. - : Frontiers Media S.A.. - 2296-634X. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC.
  •  
9.
  • Toh, Eric, et al. (författare)
  • Bacterial protein MakA causes suppression of tumour cell proliferation via inhibition of PIP5K1α/Akt signalling
  • 2022
  • Ingår i: Cell Death and Disease. - : Springer Nature. - 2041-4889. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, we demonstrated that a novel bacterial cytotoxin, the protein MakA which is released by Vibrio cholerae, is a virulence factor, causing killing of Caenorhabditis elegans when the worms are grazing on the bacteria. Studies with mammalian cell cultures in vitro indicated that MakA could affect eukaryotic cell signalling pathways involved in lipid biosynthesis. MakA treatment of colon cancer cells in vitro caused inhibition of growth and loss of cell viability. These findings prompted us to investigate possible signalling pathways that could be targets of the MakA-mediated inhibition of tumour cell proliferation. Initial in vivo studies with MakA producing V. cholerae and C. elegans suggested that the MakA protein might target the PIP5K1α phospholipid-signalling pathway in the worms. Intriguingly, MakA was then found to inhibit the PIP5K1α lipid-signalling pathway in cancer cells, resulting in a decrease in PIP5K1α and pAkt expression. Further analyses revealed that MakA inhibited cyclin-dependent kinase 1 (CDK1) and induced p27 expression, resulting in G2/M cell cycle arrest. Moreover, MakA induced downregulation of Ki67 and cyclin D1, which led to inhibition of cell proliferation. This is the first report about a bacterial protein that may target signalling involving the cancer cell lipid modulator PIP5K1α in colon cancer cells, implying an anti-cancer effect.
  •  
10.
  • Wegiel, Barbara, et al. (författare)
  • A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer
  • 2005
  • Ingår i: Oncogene. - : Nature Publishing Group. - 0950-9232 .- 1476-5594. ; 24:42, s. 6385-6393
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated levels of cyclin A1 expression have been implicated in acute myeloid leukemia and in male germ cell tumors. However, a role of cyclin A1 in tumorigenesis of prostate cancer has not been reported. In the present study, expression of cyclin A1 in patients with prostate cancer and a role of cyclin A1 in mediating expression of vascular endothelial growth factor (VEGF) were investigated. Cyclin A1 was highly expressed in aggressive tumors and was significantly correlated with VEGF expression in 96 patients with prostate cancer. Treatment of LNCaP cells with R1881, a synthetic androgen resulted in increased cyclin A1 expression. Induction of cyclin A1 expression in LNCaP cells led to an increase in VEGF expression and this effect was manifested upon the R1881 treatment. Cyclin A1 failed to mediate VEGF activation in DU-145 cells lacking a functional Rb and an androgen receptor (AR). Although AR expression was induced into DU-145 cells, cyclin A1 was unable to mediate VEGF expression. However, induced coexpression of cyclin A1, Rb and AR in DU-145 cells in the presence of R1881 greatly promoted VEGF promoter activity. This suggests that cyclin A1 mediates VEGF expression in cooperation with Rb- and androgen-dependent pathways in prostate cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 56
Typ av publikation
tidskriftsartikel (51)
annan publikation (2)
forskningsöversikt (2)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (51)
övrigt vetenskapligt/konstnärligt (4)
populärvet., debatt m.m. (1)
Författare/redaktör
Persson, Jenny L., P ... (54)
Gjörloff Wingren, An ... (10)
Mongan, Nigel P. (9)
Wang, Tianyan (9)
Johnson, Heather (9)
Simoulis, Athanasios (8)
visa fler...
Hedblom, Andreas (8)
Zhang, Xuhui (8)
Dizeyi, Nishtman (7)
Sarwar, Martuza (7)
Zhang, Heqiu (7)
Robinson, Brian D. (6)
Wegiel, Barbara (6)
Semenas, Julius (6)
Guo, Jinan (6)
Feng, Xiaoyan (6)
Chen, Lingwu (6)
Xiao, Kefeng (6)
Abrahamsson, Per-And ... (5)
El-Schich, Zahra (5)
Anagnostaki, Lola (5)
Heery, David M. (5)
Ekberg, Jenny (5)
Kenner, Lukas (5)
Zou, Chang (5)
Bjartell, Anders (4)
Grundström, Thomas (4)
Miftakhova, Regina (4)
Metzler, Veronika M. (4)
Rutland, Catrin S. (4)
Ødum, Niels (4)
Jeyapalan, Jennie N. (4)
Chen, Sa, 1967- (4)
de Brot, Simone (4)
Ntekim, Atara (4)
Khaja, Azharuddin Sa ... (4)
Amjad, Ali (4)
Xia, Taolin (4)
Johnson, Allan (4)
Landberg, Göran (3)
Wigerup, Caroline (3)
Li, Fei (3)
Zhang, Yuecheng (3)
Härkönen, Pirkko (3)
Gawlitza, Kornelia (3)
Rurack, Knut (3)
Khani, Francesca (3)
Helczynski, Leszek (3)
Holm, Caroline (3)
Tan, Wanlong (3)
visa färre...
Lärosäte
Umeå universitet (55)
Lunds universitet (39)
Malmö universitet (23)
Uppsala universitet (2)
Linköpings universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Södertörns högskola (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (55)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (53)
Naturvetenskap (8)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy