SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Karina 1969 ) "

Sökning: WFRF:(Persson Karina 1969 )

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brady, L. Jeannine, et al. (författare)
  • The changing faces of Streptococcus antigen I/II polypeptide family adhesins
  • 2010
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 77:2, s. 276-286
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall-anchored adhesins identified in Gram-positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C-terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate-binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N-terminal α-helix and a C-terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram-positive surface proteins that have adhesin domains flanked by α-helical and proline-rich regions. Ever since dental caries (tooth decay) was first shown to be caused by bacteria, there has been continued interest in developing vaccine or passive immunization protocols for its control or prevention (Lehner et al., 1980). Although dental caries is not fatal, and in developed countries caries is now considered to be largely avoidable through controlled diet and good oral hygiene, there remain significant problems with childhood disease, especially among indigent populations. Consequently, caries is one of the most common worldwide infectious diseases. Therefore, research continues towards employing vaccine formulations comprised of peptide components derived from surface proteins of Streptococcus mutans, a major agent associated with dental caries (Lehner et al., 1975). One of the most promising strategies seems to be delivery of peptides, derived from glucan-binding protein B (GbpB) and antigen I/II (AgI/II) protein, via a mucosal (nasal) route. The GbpB polypeptide binds extracellular glucans, thus promoting co-adhesion of S. mutans cells in the development of dental plaque (Taubman and Nash, 2006). The AgI/II protein (also named P1, SpaP, AgB or PAc) is a major surface protein that functions as an adhesin, attaching S. mutans to the saliva-coated tooth enamel surface (Koga et al., 1990; Kelly et al., 1995). Antibodies against SpaP and GbpB block adherence and co-adhesion, respectively, thus disrupting colonization of the oral cavity by S. mutans (Ma et al., 1990; 1998; Taubman and Nash, 2006). The terminology AgI/II derives from the identification of two major cell wall antigens I and II in S. mutans by Russell et al. (1980), and the subsequent recognition that AgII was a component of AgI. Following the discovery of AgI/II, it became apparent that genes encoding orthologous proteins were widely dispersed among the streptococci (Jenkinson and Demuth, 1997). The viridans Streptococcus AgI/II adhesins range in composition from 1310 to 1653 amino acid (aa) residues, while the Streptococcus agalactiae AgI/II proteins are smaller (826–932 aa residues) (Tettelin et al., 2005). The widespread distribution of these AgI/II protein genes across the streptococci is perhaps not surprising, given the complex streptococcal communities that exist on surfaces of the oro- and naso-pharynx and within the bacterial soup of saliva. It is interesting, though, that the AgI/II family polypeptide genes have not yet been discovered in Streptococcus pneumoniae, which might be by the fact that S. pneumoniae forms a distinct evolutionary cluster (Kilian et al., 2008).
  •  
2.
  • Eriksson, Hanna M., 1978-, et al. (författare)
  • High-yield expression and purification of a monotopic membrane glycosyltransferase
  • 2009
  • Ingår i: Protein Expression and Purification. - : Elsevier. - 1046-5928 .- 1096-0279. ; 66:2, s. 143-148
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane proteins are essential to many cellular processes. However, the systematic study of membrane protein structure has been hindered by the difficulty in obtaining large quantities of these proteins. Protein overexpression using Escherichia coli is commonly used to produce large quantities of protein, but usually yields very little membrane protein. Furthermore, optimization of the expressing conditions, as well as the choice of detergent and other buffer components, is thought to be crucial for increasing the yield of stable and homogeneous protein. Herein we report high-yield expression and purification of a membrane-associated monotopic protein, the glycosyltransferase monoglucosyldiacylglycerol synthase (alMGS), in E. coli. Systematic optimization of protein expression was achieved through controlling a few basic expression parameters, including temperature and growth media, and the purifications were monitored using a fast and efficient size-exclusion chromatography (SEC) screening method. The latter method was shown to be a powerful tool for fast screening and for finding the optimal protein-stabilizing conditions. For alMGS it was found that the concentration of detergent was just as important as the type of detergent, and a low concentration of n-Dodecyl-β-D-maltoside (DDM) (~1× critical micelle concentration) was the best for keeping the protein stable and homogeneous. By using these simply methods to optimize the conditions for alMGS expression and purification, the final expression level increase by two orders of magnitude, reaching 170 mg of pure protein per litre culture.
  •  
3.
  • Forsgren, Nina, 1979-, et al. (författare)
  • A crystallizable form of the Streptococcus gordonii surface antigen SspB C-domain obtained by limited proteolysis
  • 2009
  • Ingår i: Acta Crystallographica. Section F. - 1744-3091 .- 1744-3091. ; 65:7, s. 712-714
  • Tidskriftsartikel (refereegranskat)abstract
    • SspB is a 1500-residue adhesin expressed on the surface of the oral bacterium Streptococcus gordonii. Its interaction with other bacteria and host cells initiates the development of dental plaque. The full-length C-terminal domain of SspB was cloned, overexpressed in Escherichia coli and purified. However, the protein could not be crystallized. Limited proteolysis of the full-length C-domain identified a core fragment. The proteolysis product was cloned, expressed and purified. The protein was crystallized using the hanging-drop vapour-diffusion method. X-ray data were collected and processed to a maximum resolution of 2.1 A with 96.4% completeness. The crystals belonged to space group P2(1), with one molecule in the asymmetric unit, a solvent content of 33.7% and a corresponding Matthews coefficient of 1.85 A(3) Da(-1).
  •  
4.
  • Forsgren, Nina, 1979-, et al. (författare)
  • Crystal structure of the variable domain of the Streptococcus gordonii surface protein SspB
  • 2009
  • Ingår i: Protein Science. - : Wiley. - 0961-8368 .- 1469-896X. ; 18:9, s. 1896-1905
  • Tidskriftsartikel (refereegranskat)abstract
    • The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V-) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V-domain from S. gordonii SspB at 2.3 A resolution. The domain comprises a beta-supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V-domain is similar to the previously reported V-domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V-domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V-domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.
  •  
5.
  • Landström, Jens, et al. (författare)
  • Small molecules containing hetero-bicyclic ring systems compete with UDP-Glc for binding to WaaG glycosyltransferase
  • 2012
  • Ingår i: Glycoconjugate Journal. - : Springer. - 0282-0080 .- 1573-4986. ; 29:7, s. 491-502
  • Tidskriftsartikel (refereegranskat)abstract
    • The α-1,3-glucosyltransferase WaaG is involved in the synthesis of the core region of lipopolysaccharides in E. coli. A fragment-based screening for inhibitors of the WaaG glycosyltrasferase donor site has been performed using NMR spectroscopy. Docking simulations were performed for three of the compounds of the fragment library that had shown binding activity towards WaaG and yielded 3D models for the respective complexes. The three ligands share a hetero-bicyclic ring system as a common structural motif and they compete with UDP-Glc for binding. Interestingly, one of the compounds promoted binding of uridine to WaaG, as seen from STD NMR titrations, suggesting a different binding mode for this ligand. We propose these compounds as scaffolds for the design of selective high-affinity inhibitors of WaaG. Binding of natural substrates, enzymatic activity and donor substrate selectivity were also investigated by NMR spectroscopy. Molecular dynamics simulations of WaaG were carried out with and without bound UDP and revealed structural changes compared to the crystal structure and also variations in flexibility for some amino acid residues between the two WaaG systems studied.
  •  
6.
  • Nylander, Åsa, 1974-, et al. (författare)
  • Structural and functional analysis of the N-terminal domain of the Streptococcus gordonii adhesin Sgo0707
  • 2013
  • Ingår i: PLOS ONE. - : Public Library Science. - 1932-6203. ; 8:5, s. e63768-
  • Tidskriftsartikel (refereegranskat)abstract
    • The commensal Streptococcus gordonii expresses numerous surface adhesins with which it interacts with other microorganisms, host cells and salivary proteins to initiate dental plaque formation. However, this Gram-positive bacterium can also spread to non-oral sites such as the heart valves and cause infective endocarditis. One of its surface adhesins, Sgo0707, is a large protein composed of a non-repetitive N-terminal region followed by several C-terminal repeat domains and a cell wall sorting motif. Here we present the crystal structure of the Sgo0707 N-terminal domains, refined to 2.1 Å resolution. The model consists of two domains, N1 and N2. The largest domain, N1, comprises a putative binding cleft with a single cysteine located in its centre and exhibits an unexpected structural similarity to the variable domains of the streptococcal Antigen I/II adhesins. The N2-domain has an IgG-like fold commonly found among Gram-positive surface adhesins. Binding studies performed on S. gordonii wild-type and a Sgo0707 deficient mutant show that the Sgo0707 adhesin is involved in binding to type-1 collagen and to oral keratinocytes.
  •  
7.
  • Nylander, Åsa, 1974-, et al. (författare)
  • Structure of the C-terminal domain of the surface antigen SpaP from the caries pathogen Streptococcus mutans
  • 2011
  • Ingår i: Acta Crystallographica. Section F. - : International Union of Crystallography. - 1744-3091 .- 1744-3091. ; 67, s. 23-26
  • Tidskriftsartikel (refereegranskat)abstract
    • SpaP is a 1500-residue adhesin expressed on the surface of the caries-implicated bacterium Streptococcus mutans. SpaP is a member of the antigen I/II (AgI/II) family of proteins expressed by oral streptococci. These surface proteins are crucial for the incorporation of streptococci into dental plaque. The structure of the C-terminal domain of SpaP (residues 1136-1489) was solved and refined to 2.2 Å resolution with six molecules in the asymmetric unit. Similar to a related AgI/II structure, SpaP is stabilized by isopeptide bonds between lysine and asparagine side chains.
  •  
8.
  • Persson, Karina, 1969- (författare)
  • Crystallization of the fimbrial protein FimP from Actinomyces oris and of a triple Ile-to-Met mutant engineered to facilitate selenomethionine labelling
  • 2011
  • Ingår i: Acta Crystallographica. Section F. - : International Union of Crystallography. - 1744-3091 .- 1744-3091. ; F67, s. 1207-1210
  • Tidskriftsartikel (refereegranskat)abstract
    • Actinomyces oris is an oral bacterium important for the development of dental plaque. It expresses two forms of fimbriae: type 1 and type 2. FimP, which is the fimbrial protein that is polymerized into the stalk of the type 1 fimbriae, was cloned, overexpressed and crystallized. X-ray data were collected and processed to 2.2 Å resolution. The crystals belonged to space group P21212, with one molecule in the asymmetric unit. To facilitate structure determination using single anomalous dispersion, three methionines were introduced by site-directed mutagenesis. Crystals of selenomethionine-labelled protein were obtained by streak-seeding and diffracted to 2.0 Å resolution.
  •  
9.
  • Persson, Karina, 1969- (författare)
  • Structure of the sortase AcSrtC-1 from Actinomyces oris
  • 2011
  • Ingår i: Acta Crystallographica Section D. - : International Union of Crystallography. - 0907-4449 .- 1399-0047. ; 67, s. 212-217
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of the sortase AcSrtC-1 from the oral microorganism Actinomyces oris has been determined to 2.4 Å resolution. AcSrtC-1 is a cysteine transpeptidase that is responsible for the formation of fimbriae by the polymerization of a shaft protein. Similar to other pili-associated sortases, the AcSrtC-1 active site is protected by a flexible lid. The asymmetric unit contains five AcSrtC-1 molecules and their catalytic Cys-His-Arg triads are trapped in two different conformations. It is also shown that the thermostability of the enzyme is increased by the presence of calcium.
  •  
10.
  • Persson, Karina, 1969-, et al. (författare)
  • The pilin protein FimP from Actinomyces oris : crystal structure and sequence analyses
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:10, s. e48364-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Actinomyces oris type-1 pili are important for the initial formation of dental plaque by binding to salivary proteins that adhere to the tooth surface. Here we present the X-ray structure of FimP, the protein that is polymerized into the type-1 pilus stalk, assisted by a pili-specific sortase. FimP consists of three tandem IgG-like domains. The middle and C-terminal domains contain one autocatalyzed intramolecular isopeptide bond each, a feature used by Gram-positive bacteria for stabilization of surface proteins. While the N-terminal domain harbours all the residues necessary for forming an isopeptide bond, no such bond is observed in the crystal structure of this unpolymerized form of FimP. The monomer is further stabilized by one disulfide bond each in the N- and C-terminal domains as well as by a metal-coordinated loop protruding from the C-terminal domain. A lysine, predicted to be crucial for FimP polymerization by covalent attachment to a threonine from another subunit, is located at the rim of a groove lined with conserved residues. The groove may function as a docking site for the sortase-FimP complex. We also present sequence analyses performed on the genes encoding FimP as well as the related FimA, obtained from clinical isolates.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy