SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Linnèa) "

Sökning: WFRF:(Persson Linnèa)

  • Resultat 1-10 av 64
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Lindh, Linnea, et al. (författare)
  • Dye-sensitized solar cells based on Fe N-heterocyclic carbene photosensitizers with improved rod-like push-pull functionality
  • 2021
  • Ingår i: Chemical Science. - : Royal Society of Chemistry (RSC). - 2041-6520 .- 2041-6539. ; 12:48, s. 16035-16053
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation of octahedral iron(ii)-N-heterocyclic carbene (NHC) complexes, employing different tridentate C^N^C ligands, has been designed and synthesized as earth-abundant photosensitizers for dye sensitized solar cells (DSSCs) and related solar energy conversion applications. This work introduces a linearly aligned push-pull design principle that reaches from the ligand having nitrogen-based electron donors, over the Fe(ii) centre, to the ligand having an electron withdrawing carboxylic acid anchor group. A combination of spectroscopy, electrochemistry, and quantum chemical calculations demonstrate the improved molecular excited state properties in terms of a broader absorption spectrum compared to the reference complex, as well as directional charge-transfer displacement of the lowest excited state towards the semiconductor substrate in accordance with the push-pull design. Prototype DSSCs based on one of the new Fe NHC photosensitizers demonstrate a power conversion efficiency exceeding 1% already for a basic DSSC set-up using only the I−/I3−redox mediator and standard operating conditions, outcompeting the corresponding DSSC based on the homoleptic reference complex. Transient photovoltage measurements confirmed that adding the co-sensitizer chenodeoxycholic acid helped in improving the efficiency by increasing the electron lifetime in TiO2. Time-resolved spectroscopy revealed spectral signatures for successful ultrafast (<100 fs) interfacial electron injection from the heteroleptic dyes to TiO2. However, an ultrafast recombination process results in undesirable fast charge recombination from TiO2back to the oxidized dye, leaving only 5-10% of the initially excited dyes available to contribute to a current in the DSSC. On slower timescales, time-resolved spectroscopy also found that the recombination dynamics (longer than 40 μs) were significantly slower than the regeneration of the oxidized dye by the redox mediator (6-8 μs). Therefore it is the ultrafast recombination down to fs-timescales, between the oxidized dye and the injected electron, that remains as one of the main bottlenecks to be targeted for achieving further improved solar energy conversion efficiencies in future work.
  •  
4.
  • Lindh, Linnea, et al. (författare)
  • Multifaceted Deactivation Dynamics of Fe(II) N-Heterocyclic Carbene Photosensitizers
  • 2023
  • Ingår i: Journal of Physical Chemistry A. - 1089-5639. ; 127:48, s. 10210-10222
  • Tidskriftsartikel (refereegranskat)abstract
    • Excited state dynamics of three iron(II) carbene complexes that serve as prototype Earth-abundant photosensitizers were investigated by ultrafast optical spectroscopy. Significant differences in the dynamics between the investigated complexes down to femtosecond time scales are used to characterize fundamental differences in the depopulation of triplet metal-to-ligand charge-transfer (3MLCT) excited states in the presence of energetically accessible triplet metal-centered (3MC) states. Novel insights into the full deactivation cascades of the investigated complexes include evidence of the need to revise the deactivation model for a prominent iron carbene prototype complex, a refined understanding of complex 3MC dynamics, and a quantitative discrimination between activated and barrierless deactivation steps along the 3MLCT → 3MC → 1GS path. Overall, the study provides an improved understanding of photophysical limitations and opportunities for the use of iron(II)-based photosensitizers in photochemical applications.
  •  
5.
  • Lindh, Linnea, et al. (författare)
  • Side-group switching between metal-to-ligand charge-transfer and metal-centered excited state properties in iron(II) N-heterocyclic carbene complexes
  • 2024
  • Ingår i: Coordination Chemistry Reviews. - 0010-8545. ; 506
  • Forskningsöversikt (refereegranskat)abstract
    • Fe(II) N-heterocyclic carbene (NHC) complexes have emerged over the last decade as a promising class of light-harvesting complexes for a variety of photochemical applications relying on the presence of high-energy excited states of mainly charge-transfer character with excited state lifetimes of tens of picoseconds or longer. Recent spectroscopic investigations have significantly refined the understanding of some of the key prototype complexes of this kind and highlighted the subtle balance between population of triplet metal-to-ligand charge-transfer (3MLCT) and triplet metal-centered (3MC) states as a key issue to better understand and ultimately control the excited state dynamics in these complexes. To present a broader perspective on this issue, we here re-examine and discuss the excited state properties of a series of complexes with different side-groups on a common Fe NHC scaffold. Both the steady-state absorption spectrum and excited state dynamics are influenced by the side-group substitution, and the changes are rationalized based on shifting of the lowest metal-to-ligand charge-transfer (MLCT) state in energy based on the electron-withdrawing or electron-donating properties of the side-groups. Only electron-withdrawing substituents such as carboxylic acid groups ensured that the majority excited population stays in the 3MLCT state for ∼20 ps rather than rapidly converting into metal-centered (MC) states. In other complexes, the 3MLCT state survived <300 fs after which the 3MC state was populated for ∼10 ps. The transient absorption results also show that the dynamics can be switched in a simple manner by deprotonating the carboxylic acid group, which renders some of the complexes pH-sensitive. For the here discussed complexes, the results from transient absorption measurements indicate that the 3MLCT and 3MC states were close enough in energy to enable the side-group to determine the photophysics. The emerging understanding of the 3MLCT-3MC balance, as well as the nature and properties of the 3MC state in these complexes with intermediate ligand field strength is used to provide a broader fundamental perspective required to improve the ligand-design of Fe carbene complexes for issues such as to ensure a long-lived 3MLCT state.
  •  
6.
  •  
7.
  • Nyberg, Lena, 1979, et al. (författare)
  • A single-step competitive binding assay for mapping of single DNA molecules
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 417:1, s. 404-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical mapping of genomic DNA is of relevance for a plethora of applications such as scaffolding for sequencing and detection of structural variations as well as identification cif pathogens like bacteria and viruses. For future clinical applications it is desirable to have a fast and robust mapping method based on as few steps as possible. We here demonstrate a single-step method to obtain a DNA barcode that is directly visualized using nanofluidic devices and fluorescence microscopy. Using a mixture of YOYO-1, a bright DNA dye, and netropsin, a natural antibiotic with very high AT specificity, we obtain a DNA map with a fluorescence intensity profile along the DNA that reflects the underlying sequence. The netropsin binds to AT-tetrads and blocks these binding sites from YOYO-1 binding which results in lower fluorescence intensity from AT-rich regions of the DNA. We thus obtain a DNA barcode that is dark in AT-rich regions and bright in GC-rich regions with kilobasepair resolution. We demonstrate the versatility of the method by obtaining a barcode on DNA from the phage T4 that captures its circular permutation and agrees well with its known sequence.
  •  
8.
  •  
9.
  • Alalam, Hanna, et al. (författare)
  • A High-Throughput Method for Screening for Genes Controlling Bacterial Conjugation of Antibiotic Resistance.
  • 2020
  • Ingår i: mSystems. - 2379-5077. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The rapid horizontal transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high-throughput. We then mix the resistance plasmid-carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals, and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within Escherichia coli populations, by screening the Keio deletion collection in high replication. We recover all seven known chromosomal gene mutants affecting conjugation as donors and identify many novel mutants, all of which diminish antibiotic resistance transmission. We validate nine of the novel genes' effects in liquid mating assays and complement one of the novel genes' effect on conjugation (rseA). The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improve the longevity of current and future antibiotics. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.IMPORTANCE The rapid transmission of antibiotic resistance genes on conjugative plasmids between bacterial host cells is a major cause of the accelerating antibiotic resistance crisis. There are currently no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation, which prevents understanding and targeting conjugation. We introduce a novel experimental framework to screen for conjugation-based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. As proof-of-principle, we exhaustively explore chromosomal genes controlling F-plasmid donation within E. coli populations. We recover all previously known and many novel chromosomal gene mutants that affect conjugation efficiency. The new framework holds great potential for rapid screening of compounds that decrease transmission. Further, the platform can easily be adapted to explore interspecies conjugation, plasmid-borne factors, and experimental evolution and be used for rapid construction of strains.
  •  
10.
  • Alalam, Hanna, et al. (författare)
  • Conjugation factors controlling F-plasmid antibiotic resistance transmission
  • 2018
  • Ingår i: BioRxiv. - : Cold Spring Harbor Laboratory.
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The rapid horizontal transmission of many antibiotic resistance genes between bacterial host cells on conjugative plasmids is a major cause of the accelerating antibiotic resistance crisis. Preventing understanding and targeting conjugation, there currently are no experimental platforms for fast and cost-efficient screening of genetic effects on antibiotic resistance transmission by conjugation. We introduce a novel experimental framework to screen for conjugation based horizontal transmission of antibiotic resistance between >60,000 pairs of cell populations in parallel. Plasmid-carrying donor strains are constructed in high throughput. We then mix the resistance plasmid carrying donors with recipients in a design where only transconjugants can reproduce, measure growth in dense intervals and extract transmission times as the growth lag. As proof-of-principle, we exhaustively explored chromosomal genes controlling F plasmid donation within E. coli populations, by screening the Keio deletion collection at high replication. We recover all six known chromosomal gene mutants affecting conjugation and identify >50 novel factors, all of which diminish antibiotic resistance transmission. We verify 10 of the novel genes' effects in a liquid mating assay. The new framework holds great potential for exhaustive disclosing of candidate targets for helper drugs that delay resistance development in patients and societies and improves the longevity of current and future antibiotics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 64
Typ av publikation
tidskriftsartikel (46)
konferensbidrag (8)
forskningsöversikt (4)
rapport (3)
konstnärligt arbete (1)
annan publikation (1)
visa fler...
doktorsavhandling (1)
licentiatavhandling (1)
visa färre...
Typ av innehåll
refereegranskat (54)
övrigt vetenskapligt/konstnärligt (7)
populärvet., debatt m.m. (3)
Författare/redaktör
Lindh, Linnea (14)
Chábera, Pavel (11)
Persson, Petter (11)
Yartsev, Arkady (11)
Wärnmark, Kenneth (11)
Persson, Jan (10)
visa fler...
Ekdahl, Linnea (10)
Persson, Linnéa (9)
Uhlig, Jens (9)
Rosemann, Nils W. (9)
Wahlberg, Bo, 1959- (8)
Persson, Linnea, 199 ... (8)
Prakash, Om (7)
Lönnerfors, Celine (6)
Geppert, Barbara (4)
Sundström, Villy (4)
Lomoth, Reiner (4)
Strand, Daniel (4)
Schwarz, Jesper (4)
Reynisson, Petur (3)
Farewell, Anne, 1961 (3)
Gren, Nina (3)
Ericsson, Tore (3)
Malmqvist, Ebba (3)
Friberg, Johan (3)
Becker, Per (3)
Alcer, David (3)
Gabrielsson, Sara (3)
Krause, Torsten (3)
Roldin, Pontus (3)
Kritzberg, Emma (3)
Olsson, Lennart (3)
Persson, Andreas (3)
Sporre, Moa (3)
Häggström, Lennart (3)
Persson, Tomas (3)
Dahm-Kähler, Pernill ... (3)
Graf, Fabrice (3)
Mattsson, Matilda (3)
Richter, Jessika Lut ... (3)
Stroh, Emilie (3)
Dahlner, Anders (3)
Alfonzo, Emilia (3)
Falconer, Henrik (3)
Osberg, Gustav (3)
Hederström, Veronica (3)
Elvén Eriksson, Hele ... (3)
Rydhe, Eskil (3)
Kaul, Nidhi (3)
Gupta, Arvind Kumar (3)
visa färre...
Lärosäte
Lunds universitet (29)
Göteborgs universitet (14)
Uppsala universitet (14)
Kungliga Tekniska Högskolan (12)
Karolinska Institutet (11)
Linköpings universitet (7)
visa fler...
Chalmers tekniska högskola (5)
Umeå universitet (1)
Stockholms universitet (1)
Örebro universitet (1)
Gymnastik- och idrottshögskolan (1)
Linnéuniversitetet (1)
Högskolan i Borås (1)
RISE (1)
Naturhistoriska riksmuseet (1)
Sveriges Lantbruksuniversitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
IVL Svenska Miljöinstitutet (1)
visa färre...
Språk
Engelska (59)
Svenska (5)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (28)
Medicin och hälsovetenskap (23)
Teknik (16)
Samhällsvetenskap (4)
Lantbruksvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy