SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Malin 1983 ) "

Sökning: WFRF:(Persson Malin 1983 )

  • Resultat 1-10 av 25
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Albet-Torres, Nuria, et al. (författare)
  • Molecular motors on lipid bilayers and silicon dioxide: different driving forces for adsorption
  • 2010
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 6:14, s. 3211-3219
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding how different types of interactions govern adsorption of the myosin motor fragment heavy meromyosin (HMM) onto different substrates is important in functional studies of actomyosin and for the development of motor powered lab-on-a-chip applications. In this study, we have combined in vitro motility assays and quartz crystal microbalance with dissipation (QCM-D) monitoring to investigate the underlying adsorption mechanisms of HMM onto supported lipid bilayers in comparison with pure and silanized SiO2. The QCM-D results, combined with data showing actin transportation by HMM adsorbed onto positively charged supported lipid bilayers, suggest reversible HMM surface adsorption via the negatively charged coiled-coil tail region. In contrast, the QCM-D data for HMM adsorption onto negatively charged lipids support a model according to which HMM adsorbs onto negatively charged surfaces largely via the positively charged actin binding regions. Adsorption studies at low (30-65 mM) and high (185-245 mM) ionic strengths onto piranha cleaned SiO2 surfaces (contact angle
  •  
2.
  • Balaz, Martina, et al. (författare)
  • Effects of surface adsorption on catalytic activity of heavy meromyosin studied using a fluorescent ATP analogue
  • 2007
  • Ingår i: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 46:24, s. 7233-7251
  • Tidskriftsartikel (refereegranskat)abstract
    • Biochemical studies in solution and with myosin motor fragments adsorbed to surfaces (in vitro motility assays) are invaluable for elucidation of actomyosin function. However, there is limited understanding of how surface adsorption affects motor properties, e.g., catalytic activity. Here we address this issue by comparing the catalytic activity of heavy meromyosin (HMM) in solution and adsorbed to standard motility assay surfaces [derivatized with trimethylchlorosilane (TMCS)]. For these studies we first characterized the interaction of HMM and actomyosin with the fluorescent ATP analogue adenosine 5'-triphosphate Alexa Fluor 647 2'- (or 3'-) O-(N-(2-aminoethyl)urethane) hexa(triethylammonium) salt (Alexa-ATP). The data suggest that Alexa-ATP is hydrolyzed by HMM in solution at a slightly higher rate than ATP but with a generally similar mechanism. Furthermore, Alexa-ATP is effective as a fuel for HMM-propelled actin filament sliding. The catalytic activity of HMM on TMCS surfaces was studied using (1) Alexa-ATP in total internal reflection fluorescence (TIRF) spectroscopy experiments and (2) Alexa-ATP and ATP in HPLC-aided ATPase measurements. The results support the hypothesis of different HMM configurations on the surface. However, a dominant proportion of the myosin heads were catalytically active, and their average steady-state hydrolysis rate was slightly higher (with Alexa-ATP) or markedly higher (with ATP) on the surface than in solution. The results are discussed in relation to the use of TMCS surfaces and Alexa-ATP for in vitro motility assays and single molecule studies. Furthermore, we propose a novel TIRF microscopy method to accurately determine the surface density of catalytically active myosin motors.
  •  
3.
  • Balaz, Martina, et al. (författare)
  • Protein-surface Interactions and Functional Geometry of Surface-adsorbed Myosin Motor Fragments
  • 2009
  • Ingår i: Biophysical Journal. - : Biophysical Society. - 0006-3495 .- 1542-0086. ; 96:3 Suppl. 1, s. 495A-495A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Biophysical studies with myosin motor fragments (heavy meromyosin; HMM and subfragment 1; S1) adsorbed to artificial surfaces, are important for elucidation of actomyosin function. In spite of the widespread use of such in vitro motility assays and single molecule studies, little is known about the adsorption geometry and effects of protein-surface interactions on the motor properties. Here, we investigate these factors with focus on HMM using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) spectroscopy based ATPase assays. In the latter, we monitored the turnover of Alexa-fluor647-ATP (Alexa-ATP) by surface adsorbed HMM. Studies were performed with HMM/S1 adsorbed to model hydrophilic (SiO2) or hydrophobic (trimethyl-chlorosilane [TMCS] - derivatized) surfaces. The results suggest that adsorption of HMM is weakened on SiO2 (but not on TMCS) at high (245 mM) compared to low (65 mM) ionic strengths. The changes in ionic strength were also associated with structural changes in the protein layer according to QCM-D studies. Moreover, the TIRF based ATPase assay suggested a larger fraction of HMM molecules with low catalytic activity on SiO2. These and other TIRF and QCM-D results, suggest that HMM preferentially adsorbs to negatively charged hydrophilic surfaces via the actin-binding region. In contrast, the majority of the HMM molecules seem to adsorb via their C-terminal tail on moderately hydrophobic surfaces. In the latter case the catalytic sites appear to be close to, but not immobilized on the surface. The results with HMM were compared to, and found consistent with, QCM-D and TIRF-data obtained with S1 motor fragments.
  •  
4.
  • Bengtsson, Elina, et al. (författare)
  • Actomyosin Interactions and Different Structural States of Actin Filaments
  • 2013
  • Ingår i: Biophysical Journal. - : Biophysical Society. - 0006-3495 .- 1542-0086. ; 104:2 Suppl. 1, s. 480A-481A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The persistence length (LP) of a polymer is proportional to its flexural rigidity and quantifies the decay length of its tangent angle (for a polymer freely suspended in solution). Further, it has been suggested that the decay length for the sliding direction of heavy meromyosin (HMM) propelled actin filaments in the in vitro motility assay (IVMA) is quantitatively identical to Lp of the free leading filament end. On this assumption we measured LP under different conditions to address a hypothesis that the actin filament exists in different metastable conformations, each characterized by a different flexural rigidity. The following values for Lp (mean 5 95 % confidence limits) were obtained: 1. with phalloidin (Ph) in solution: 12.61 5 0.65 mm (N=809). 2. without Phin solution: 9.07 5 1.06 mm (N=811), 3. with Ph and HMM in solution (rigor):10.21 5 0.75 mm (N=429), 4. without Ph (from IVMA paths; 1 mM MgATP):10.0850.66 mm (N=309), 5. with Ph, IVMA (1 mM MgATP): 11.41 5 0.57 mm (N=243), 6. with Ph, IVMA, 0.05 mM MgATP: 6.30 5 0.27 mm (N=383) and 7. without Ph, IVMA, 0.02-0.05 mM MgATP: 5.33 5 0.37 mm (N=161). The re-sults are consistent with different actin filament states where one is stabilized by phalloidin and one is favored by HMM binding and the absence of Ph. Effects of HMM are consistent with a possible role of the structural state of actin filaments in effective actomyosin motility. The very low LP found for IVMA at low [MgATP] (6-7) may reflect the presence of an actin filament state populated at low average cross-bridge strains, possibly with MgADP at the active site. Alternatively, it may be due to sideways forces produced by increased number of HMM-actin interactions close to the leading filament end.
  •  
5.
  • Bengtsson, Elina, et al. (författare)
  • Altered Structural State of Actin Filaments Upon MYOSIN II Binding
  • 2015
  • Ingår i: Biophysical Journal. - : Biophysical Society. - 0006-3495 .- 1542-0086. ; 108:2 Suppl. 1, s. 299A-300A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The paths of actin filaments propelled over a heavy meromyosin (HMM) surface in the in vitro motility assay (IVMA) can statistically be described by a path persistence length (LPP) and has been hypothesized to be proportional to the flexural rigidity of the filaments. Here, we have studied the LPP at high (130 mM) ionic strength along with the persistence length of actin filaments in solution (LPS) to elucidate how HMM binding affects the flexural rigidity of actin filaments. Characterization and control of material properties, such as the path persistence length, is useful in engineered devices that takes advantages of the function of the muscle contractile proteins e.g. for biocomputation. It has been suggested that myosin binding reduces Lpp for phalloidin stabilizedact in filaments. This is consistent with the results presented here where the phalloidin stabilized actin filaments rigidity is reduced to the level of phalloidin free actin filaments in the IVMA. Further, reducing the MgATP concentration in the IVMA would increase the HMM head density along the actin filament hence making the effect of myosin binding more pronounced. A reduced [MgATP] from 1 mM to 0.02-0.05 mM did indeed reduce the LPP from 10-12 mm to 6-7 mm for both phalloidin-stabilized and phalloidin free actin filaments. Additionally, we found a negative correlation between the LPS and the [HMM]/actin ratio. However, this [HMM] dependent reduction observed in LPS was too small to account for the reduction in LPP seen with reduced [MgATP] in the IVMA. Monte-Carlo simulations and theoretical analysis revealed that the large reduction in LPP is consistent with the idea that every head attachment adds an extra angular displacement.(Support from EU-FP7-FET-ABACUS grant number 613044).
  •  
6.
  • Bengtsson, Elina, et al. (författare)
  • Analysis of Flexural Rigidity of Actin Filaments Propelled by Surface Adsorbed Myosin Motors
  • 2013
  • Ingår i: Cytoskeleton. - : John Wiley & Sons. - 1949-3584 .- 1949-3592. ; 70:11, s. 718-728
  • Tidskriftsartikel (refereegranskat)abstract
    • Actin filaments are central components of the cytoskeleton and the contractile machinery of muscle. The filaments are known to exist in a range of conformational states presumably with different flexural rigidity and thereby different persistence lengths. Our results analyze the approaches proposed previously to measure the persistence length from the statistics of the winding paths of actin filaments that are propelled by surface-adsorbed myosin motor fragments in the in vitro motility assay. Our results suggest that the persistence length of heavy meromyosin propelled actin filaments can be estimated with high accuracy and reproducibility using this approach provided that: (1) the in vitro motility assay experiments are designed to prevent bias in filament sliding directions, (2) at least 200 independent filament paths are studied, (3) the ratio between the sliding distance between measurements and the camera pixel-size is between 4 and 12, (4) the sliding distances between measurements is less than 50% of the expected persistence length, and (5) an appropriate cut-off value is chosen to exclude abrupt large angular changes in sliding direction that are complications, e.g., due to the presence of rigor heads. If the above precautions are taken the described method should be a useful routine part of in vitro motility assays thus expanding the amount of information to be gained from these.
  •  
7.
  • Bengtsson, Elina, et al. (författare)
  • Winding Actin Filament Paths Provide Mechanistic Insights Into Actomyosin Function
  • 2012
  • Ingår i: Biophysical Journal. - : Biophysical Society. - 0006-3495 .- 1542-0086. ; 102:3 Suppl. 1, s. 146A-146A
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The statistics of heavy meromyosin (HMM) driven actin filament paths in vitro, and thermal fluctuations of actin filaments suspended in a pseudo 2D-space in solution, can be described by the cosine correlation equation (CCE): = exp(-s/[2*Lp]). Here, q0) and qs) represent tangent angles at distance 0 and s, respectively from one filament end (in solution) or from the starting point of the path. The quantity Lp is the persistence length (proportional to flexural rigidity) of the filament/path. In vitro motility assay (IVMA) studies (27-29oC) were performed along with studies of actin filaments suspended between two cover-slips in solution. Fits to the CCE gave LP = 16.5 5 1.7 mm (mean 5 95 % confidence interval) and 11.1 5 0.6 mm for phalloidin stabilized filaments in solution and propelled by HMM, respectively. In contrast, phalloidin free actin filaments (NHS-rhodamine labeled) exhibited similar LP in solution 10.1 52.1 mm and during HMM propulsion (9.8 5 0.9 mm). The filament paths were modeled using a Monte-Carlo approach updating angular changes in sliding direction at short time intervals (dt) assuming 1. lateral displacements due to cross-bridge forces and 2. thermal fluctuations of the leading filament end. The results suggest that > 3nm average lateral displacement during each actomyosin interaction would reduce LP by > 30 % compared to that of filaments without HMM. The findings are consistent with the following ideas: 1. Actin filaments exist in two different flexural rigidity states, one favored by myosin binding and the other by phalloidin stabilization, 2. Changes in actin filament flexural rigidity is not required for motion generation. 3. The myosin cross-bridges produce minimal lateral movements (< 3 nm) during the power-stroke.
  •  
8.
  • Bengtsson, Johan, et al. (författare)
  • Autonomic modulation networks in schizophrenia : The relationship between heart rate variability and functional and structural connectivity in the brain
  • 2020
  • Ingår i: Psychiatry Research. - : Elsevier BV. - 0925-4927 .- 1872-7506. ; 300
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart rate variability (HRV), a measurement of autonomic nervous system (ANS) activity, has been found reduced in schizophrenia. The anterior cingulate cortex (ACC), which is important in regulating the ANS, is structurally and functionally affected in schizophrenia. We investigate the relationship between HRV and functional and structural connectivity of the ACC in patients with schizophrenia and healthy controls. Ten patients with a diagnosis of schizophrenia and ten healthy controls were recruited. Heart rate was monitored in a naturalistic out-of-clinic setting. Magnetic resonance imaging (MRI) was performed, including resting-state functional MRI and diffusion tensor imaging. Patients with schizophrenia had significantly lower HRV compared to controls. A positive correlation between ACC connectivity with the bilateral cerebellum and HRV was found in the patients. HRV was also positively correlated with amplitude of low frequency fluctuations (ALFF) in the cerebellum, and with axial diffusivity in the middle cerebellar peduncle, in the patients. There was a significant negative relationship between antipsychotic medication dosage, HRV and all neuroimaging measures related to HRV. We conclude that ACC connectivity seems to be affected in schizophrenia, both structurally and functionally, and that the ACC-cerebellum connectivity, as well as cerebellar function, is associated with ANS regulation in patients with schizophrenia.
  •  
9.
  • de Winter, J M, et al. (författare)
  • KBTBD13 is an actin-binding protein that modulates muscle kinetics
  • 2020
  • Ingår i: Journal of Clinical Investigation. - : Stanford University Press. - 0021-9738 .- 1558-8238. ; 130:2, s. 754-767
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms that modulate the kinetics of muscle relaxation are critically important for muscle function. A prime example of the impact of impaired relaxation kinetics is nemaline myopathy caused by mutations in KBTBD13 (NEM6). In addition to weakness, NEM6 patients have slow muscle relaxation, compromising contractility and daily life activities. The role of KBTBD13 in muscle is unknown, and the pathomechanism underlying NEM6 is undetermined. A combination of transcranial magnetic stimulation-induced muscle relaxation, muscle fiber- and sarcomere-contractility assays, low-angle x-ray diffraction, and superresolution microscopy revealed that the impaired muscle-relaxation kinetics in NEM6 patients are caused by structural changes in the thin filament, a sarcomeric microstructure. Using homology modeling and binding and contractility assays with recombinant KBTBD13, Kbtbd13-knockout and Kbtbd13(R408c)-knockin mouse models, and a GFP-labeled Kbtbd13-transgenic zebrafish model, we discovered that KBTBD13 binds to actin - a major constituent of the thin filament - and that mutations in KBTBD13 cause structural changes impairing muscle-relaxation kinetics. We propose that this actin-based impaired relaxation is central to NEM6 pathology.
  •  
10.
  • Kumar, Saroj, et al. (författare)
  • Antibodies Covalently Immobilized on Actin Filaments for Fast Myosin Driven Analyte Transport
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 mu m(-1)). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 25
Typ av publikation
tidskriftsartikel (24)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (19)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Persson, Malin, 1983 ... (18)
Månsson, Alf (15)
Gingnell, Malin, 198 ... (5)
Bengtsson, Elina (5)
Kumar, Saroj (5)
Bodén, Robert, 1973- (5)
visa fler...
Persson, Jonas, 1983 ... (5)
Lard, Mercy (4)
Albet-Torres, Nuria (4)
Balaz, Martina (4)
Fällmar, David (2)
Höök, Fredrik, 1966 (2)
Röös, Elin (2)
Tolf, Conny (2)
Gullberg, Maria (2)
Sundberg, Mark (2)
Antoni, Gunnar (1)
Ma, W. (1)
Li, F. (1)
Abouhatab, Assem (1)
Abu Hatab, Assem (1)
Shen, S (1)
Weigl, Wojciech (1)
Sandor, Katalin (1)
Svensson, Camilla, I (1)
Ajeganova, Sofia (1)
Gunnarsson, Anders, ... (1)
Friedman, Ran (1)
Ahlstrand, Emma (1)
Campbell, K (1)
Olsson, Erik, 1967- (1)
Gustafsson, Thomas (1)
Lubberink, Mark (1)
Lindberg, A Michael (1)
Bengtsson, Johan (1)
Wall, Anders (1)
Sundberg, M (1)
Lindahl, Therese (1)
Persson, Martin, 197 ... (1)
Rullman, Eric (1)
Aresh, Bejan (1)
Lindahl, Therese, 19 ... (1)
Malfatti, E. (1)
Romero, N. B. (1)
Westerblad, Håkan (1)
Kvassman, Jan (1)
Gunnarsson, Anders (1)
Höök, Fredrik (1)
Mårtensson, Johanna (1)
Diez, S. (1)
visa färre...
Lärosäte
Örebro universitet (17)
Linnéuniversitetet (9)
Uppsala universitet (5)
Lunds universitet (4)
Gymnastik- och idrottshögskolan (4)
Stockholms universitet (3)
visa fler...
Chalmers tekniska högskola (3)
Karolinska Institutet (3)
Nordiska Afrikainstitutet (2)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (25)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (16)
Medicin och hälsovetenskap (12)
Lantbruksvetenskap (2)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy