SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pesch Beate) "

Sökning: WFRF:(Pesch Beate)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pesch, Beate, et al. (författare)
  • N-acetyltransferase 2 Phenotype, Occupation, and Bladder Cancer Risk : Results from the EPIC Cohort
  • 2013
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 22:11, s. 2055-2065
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An association between N-acetyltransferase 2 (NAT2) slow acetylation and bladder cancer has been consistently observed in epidemiologic studies. However, evidence has been mainly derived from case-control studies and was sparse from cohort studies. We evaluated the association between NAT2 slow acetylation and bladder cancer in a case-control study nested in the European Prospective Investigation into Cancer and Nutrition.Methods: Exposure to aromatic amines and polycyclic aromatic hydrocarbons (PAH) could be assessed for 754 cases and 833 controls for whom occupational information was documented. A semiquantitative job-exposure matrix was applied to at-risk occupations to estimate the exposure as low, medium, or high based on tertiles of the distribution of the exposure score in controls. Using a comprehensive genotyping, NAT2 acetylation status could be categorized from 6-single-nucleotide polymorphism genotypes as slow or fast in 607 cases and 695 controls with DNA from archived blood samples.Results: Occupational exposure to aromatic amines and PAH was associated with an increased bladder cancer risk [upper tertile of the distribution of the exposure score: OR = 1.37; 95% confidence interval (CI), 1.02-1.84, and OR = 1.50; 95% CI, 1.09-2.05, respectively]. NAT2 slow acetylation did not modify these risk estimates and was not itself associated with bladder cancer risk (OR = 1.02; 95% CI, 0.81-1.29).Conclusions: These findings confirm established or suspected occupational risk factors but not the anticipated role of NAT2 slow acetylation in bladder cancer. No interaction was detected between NAT2 and any exposure of interest, including smoking. Impact: Genetic testing for NAT2 would be inappropriate in occupational settings.
  •  
2.
  • Rosenberger, Albert, et al. (författare)
  • Genetic modifiers of radon-induced lung cancer risk : a genome-wide interaction study in former uranium miners
  • 2018
  • Ingår i: International Archives of Occupational and Environmental Health. - : Springer Science and Business Media LLC. - 0340-0131 .- 1432-1246. ; 91:8, s. 937-950
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Radon is a risk factor for lung cancer and uranium miners are more exposed than the general population. A genome-wide interaction analysis was carried out to identify genomic loci, genes or gene sets that modify the susceptibility to lung cancer given occupational exposure to the radioactive gas radon. Methods: Samples from 28 studies provided by the International Lung Cancer Consortium were pooled with samples of former uranium miners collected by the German Federal Office of Radiation Protection. In total, 15,077 cases and 13,522 controls, all of European ancestries, comprising 463 uranium miners were compared. The DNA of all participants was genotyped with the OncoArray. We fitted single-marker and in multi-marker models and performed an exploratory gene-set analysis to detect cumulative enrichment of significance in sets of genes. Results: We discovered a genome-wide significant interaction of the marker rs12440014 within the gene CHRNB4 (OR = 0.26, 95% CI 0.11–0.60, p = 0.0386 corrected for multiple testing). At least suggestive significant interaction of linkage disequilibrium blocks was observed at the chromosomal regions 18q21.23 (p = 1.2 × 10−6), 5q23.2 (p = 2.5 × 10−6), 1q21.3 (p = 3.2 × 10−6), 10p13 (p = 1.3 × 10−5) and 12p12.1 (p = 7.1 × 10−5). Genes belonging to the Gene Ontology term “DNA dealkylation involved in DNA repair” (GO:0006307; p = 0.0139) or the gene family HGNC:476 “microRNAs” (p = 0.0159) were enriched with LD-blockwise significance. Conclusion: The well-established association of the genomic region 15q25 to lung cancer might be influenced by exposure to radon among uranium miners. Furthermore, lung cancer susceptibility is related to the functional capability of DNA damage signaling via ubiquitination processes and repair of radiation-induced double-strand breaks by the single-strand annealing mechanism.
  •  
3.
  • Stevens, Richard G., et al. (författare)
  • Considerations of circadian impact for defining 'shift work' in cancer studies : IARC Working Group Report.
  • 2011
  • Ingår i: Occupational and Environmental Medicine. - : BMJ. - 1351-0711 .- 1470-7926. ; 68:2, s. 154-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on the idea that electric light at night might account for a portion of the high and rising risk of breast cancer worldwide, it was predicted long ago that women working a non-day shift would be at higher risk compared with day-working women. This hypothesis has been extended more recently to prostate cancer. On the basis of limited human evidence and sufficient evidence in experimental animals, in 2007 the International Agency for Research on Cancer (IARC) classified 'shift work that involves circadian disruption' as a probable human carcinogen, group 2A. A limitation of the epidemiological studies carried out to date is in the definition of 'shift work.' IARC convened a workshop in April 2009 to consider how 'shift work' should be assessed and what domains of occupational history need to be quantified for more valid studies of shift work and cancer in the future. The working group identified several major domains of non-day shifts and shift schedules that should be captured in future studies: (1) shift system (start time of shift, number of hours per day, rotating or permanent, speed and direction of a rotating system, regular or irregular); (2) years on a particular non-day shift schedule (and cumulative exposure to the shift system over the subject's working life); and (3) shift intensity (time off between successive work days on the shift schedule). The group also recognised that for further domains to be identified, more research needs to be conducted on the impact of various shift schedules and routines on physiological and circadian rhythms of workers in real-world environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy