SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pfister Stephanie) "

Sökning: WFRF:(Pfister Stephanie)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bauer, Fredric, et al. (författare)
  • Petrochemicals and Climate Change : Tracing Globally Growing Emissions and Key Blind Spots in a Fossil-Based Industry
  • 2022
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • With the risk of climate breakdown becoming ever more pressing as the world is on track for 2.7 degrees warming, pressure is increasing on all sectors of the economy to break with fossil fuel dependence and reduce greenhouse gas (GHG) emissions. In this context, the chemical industry and the production of important basic chemicals is a key sector to consider. Although historically a driver of economic development, the sector is highly dependent on fossil resources for use as both feedstock and fuel in the production of as well organic as inorganic chemicals. The chemical industry demands both petroleum fractions and natural gas. Petroleum fractions such as naphtha and petroleum gases are used as feedstocks for building block chemicals and polymers (e.g., benzene and polyethylene), while natural gas is used for methanol and ammonia. Indeed, the sector is associated with both large process emissions as well as energy related emissions. Our results demonstrate that in 2020 direct GHG emissions from the petrochemical sector amounted to 1.8 Gt CO2eq which is equivalent to 4% of global GHG emissions. Indirect GHG emissions resulting from the activities in other industries supplying inputs for the petrochemical industry accounted for another 3.8 Gt CO2eq. The petrochemical industry is thus associated with a total of 5.6Gt CO2eq of GHG emissions, equivalent to ~10% of global emissions. Over the past 25 years, emissions associated with petrochemicals have doubled and the sector is the third most GHG emitting industry. This increase is fueled by large growth of petrochemicals production as well as growth in regions with high indirect emissions, i.e., in energy systems with high dependence on coal and other fossil fuels. Over the past decades, the industry has grown rapidly in the Asia-Pacific region especially in China which in 2020 was the source for about 47% of global GHG emissions associated with petrochemicals. USA accounts for 6% of the emissions from the industry and Europe for 5%. The BRIC group of countries, which except for China also includes Brazil, India, and Russia, currently accounts for 57% of GHG emissions from petrochemicals, showing that the emissions from this sector are more geographically clustered in these countries than emissions from other sectors.Proper disaggregated and comparative analyses of key products is currently not possible. Data confidentiality and a high reliance on proxy data limit the reliability of LCA and stands in the way of mapping climate impacts. A strong demand of chemicals life cycle inventory (LCI) data for environmental footprinting has resulted in a general increase of chemicals data in many LCI databases, but the energy demands both for heat and electricity are typically not well-documented for production processes outside the main bulk chemicals. If incinerated at end-of-life plastics and other chemical products will emit embodied carbon as CO2 and if landfilled there is a risk of slow degradation with associated methane emissions. Global estimates based on most LCA datasets will thus significantly underestimate emissions from the chemical industry.The multitude of value chains dependent on the petrochemical industry makes it an important contribution to life cycle emissions in many sectors of the economy. Petrochemicals are used as an intermediate input in many industries and the emissions associated with them thus propagate through the economy, with final demand in manufacturing industries and services being associated with the largest shares of emissions from chemicals. The impacts and emissions downstream in value chains is however poorly understood and disclosure by petrochemical producers is lacking and insufficient. While disclosure of emissions in the industry has increased over the past decades, it remains partial and shows inconsistencies over time. This is due to issues such as different reporting standards, large discrepancies in the extent of disclosure as well as various other gaps and inconsistencies in reporting. This holds for all scopes, although Scope 1 emissions are better covered. Only some firms disclose information about downstream Scope 3 emissions including end-of-life for final products. Emission targets set by firms in the industry do not correspond to the challenge of large and rapid emission reductions. Many targets include only parts of operations and transparent, standardized target-setting is lacking. Reported emission reduction initiatives to achieve targets are far from sufficient focusing mainly on efficiency improvements or insubstantial parts of the operation. Shifting to renewable energy is a key for rapid emission reductions in the industry, yet few firms report strategic targets for this shift. As the industry has historically been closely linked to and integrated with the energy sector it holds a great potential for engaging with the deployment and adoption of renewable energy, although this implies a transformation of the knowledge base and resource allocation in the industry which is still focused on fossil fuels. Roadmaps and scenario analyses show that apart from a shift to renewable energy, a transformation of the industry relies on the deployment of key technologies which are not yet fully developed. This includes new technologies for hydrogen production, e.g., electrolytic (green) hydrogen or hydrogen produced with carbon capture and storage (CCS). New chemical synthesis pathways based on captured carbon, so called carbon capture and utilization (CCU) is also highlighted, but the massive demand for renewable energy associated with this pathway is a significant barrier to its adoption in the near term. The report shows how efficiency improvements continues to be the main focus for reducing the climate impact of petrochemicals, but that this is a completely inadequate approach for achieving the emissions reductions necessary in the coming decades. Breakthrough technologies are unlikely to be deployed at a rate consistent with international climate targets, and there is a great risk in relying on the promises of technologies which are yet to be proven at scale. The large knowledge gaps that remain are key barriers for effective governance of the transition.
  •  
2.
  • Debette, Stephanie, et al. (författare)
  • Identification of cis- and trans-Acting Genetic Variants Explaining Up to Half the Variation in Circulating Vascular Endothelial Growth Factor Levels
  • 2011
  • Ingår i: Circulation Research. - 0009-7330 .- 1524-4571. ; 109:5, s. 554-563
  • Tidskriftsartikel (refereegranskat)abstract
    • Rationale: Vascular endothelial growth factor (VEGF) affects angiogenesis, atherosclerosis, and cancer. Although the heritability of circulating VEGF levels is high, little is known about its genetic underpinnings. Objective: Our aim was to identify genetic variants associated with circulating VEGF levels, using an unbiased genome-wide approach, and to explore their functional significance with gene expression and pathway analysis. Methods and Results: We undertook a genome-wide association study of serum VEGF levels in 3527 participants of the Framingham Heart Study, with preplanned replication in 1727 participants from 2 independent samples, the STANISLAS Family Study and the Prospective Investigation of the Vasculature in Uppsala Seniors study. One hundred forty single nucleotide polymorphism (SNPs) reached genome-wide significance (P<5x10(-8)). We found evidence of replication for the most significant associations in both replication datasets. In a conditional genome-wide association study, 4 SNPs mapping to 3 chromosomal regions were independently associated with circulating VEGF levels: rs6921438 and rs4416670 (6p21.1, P=6.11x10(-506) and P=1.47x10(-12)), rs6993770 (8q23.1, P=2.50x10(-16)), and rs10738760 (9p24.2, P=1.96x10(-34)). A genetic score including these 4 SNPs explained 48% of the heritability of serum VEGF levels. Six of the SNPs that reached genome-wide significance in the genome-wide association study were significantly associated with VEGF messenger RNA levels in peripheral blood mononuclear cells. Ingenuity pathway analyses showed found plausible biological links between VEGF and 2 novel genes in these loci (ZFPM2 and VLDLR). Conclusions: Genetic variants explaining up to half the heritability of serum VEGF levels were identified. These new insights provide important clues to the pathways regulating circulating VEGF levels.
  •  
3.
  • Hoffman, Lindsey M., et al. (författare)
  • Clinical, Radiologic, Pathologic, and Molecular Characteristics of Long-Term Survivors of Diffuse Intrinsic Pontine Glioma (DIPG) : A Collaborative Report From the International and European Society for Pediatric Oncology DIPG Registries
  • 2018
  • Ingår i: Journal of Clinical Oncology. - : AMER SOC CLINICAL ONCOLOGY. - 0732-183X .- 1527-7755. ; 36:19, s. 1963-1972
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeDiffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of < 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs).Materials and MethodsData abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia.ResultsAmong 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age < 3 or > 10 years (11% v 3% and 33% v 23%, respectively; P < .001) and with longer symptom duration (P < .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002).ConclusionWe report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials.
  •  
4.
  • Hudson, Thomas J., et al. (författare)
  • International network of cancer genome projects
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
5.
  • Kirchhoff, Leah, et al. (författare)
  • Microbial community composition unaffected by mycorrhizal plant removal in sub-arctic tundra
  • 2024
  • Ingår i: Fungal ecology. - 1754-5048 .- 1878-0083. ; 69
  • Tidskriftsartikel (refereegranskat)abstract
    • Vegetation changes in a warming Arctic may affect plant-associated soil microbial communities with possible consequences for the biogeochemical cycling of carbon (C) and nitrogen (N). In a sub-arctic tundra heath, we factorially removed plant species with ecto- and ericoid mycorrhizal associations. After two years, we explored how mycorrhizal type-specific plant removal influences microbial communities, soil and microbial C and N pools, and extracellular enzymatic activities. Removal of ecto- and ericoid mycorrhizal plants did not change the soil fungal or bacterial community composition or their extracellular enzyme activities. However, ericoid plant removal decreased microbial C:N ratio, suggesting a stoichiometric effect decoupled from microbial community composition. In other words, microbial communities appear to show initial plasticity in response to major changes in tundra vegetation. This highlights the importance of longer-term perspectives when investigating the effects of vegetation changes on biogeochemical processes in Arctic ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
rapport (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Pontén, Fredrik (1)
Uhlén, Mathias (1)
Campo, Elias (1)
Nettekoven, Gerd (1)
Bardelli, Alberto (1)
Caldas, Carlos (1)
visa fler...
Calvo, Fabien (1)
Lind, Lars (1)
Kaspers, Gertjan J. ... (1)
Egevad, Lars (1)
Estivill, Xavier (1)
Flicek, Paul (1)
Guigo, Roderic (1)
Gut, Ivo (1)
Lehrach, Hans (1)
Stunnenberg, Hendrik ... (1)
Valencia, Alfonso (1)
Grotzer, Michael A (1)
Wainwright, Brandon ... (1)
Nakamura, Yusuke (1)
Borresen-Dale, Anne- ... (1)
Easton, Douglas F. (1)
Bauer, Fredric (1)
Ingelsson, Erik (1)
Thomas, Gilles (1)
Väisänen, Maria (1)
Borg, Åke (1)
Sander, Chris (1)
Brennan, Paul (1)
Tian, Geng (1)
Biankin, Andrew V. (1)
Boyault, Sandrine (1)
Eils, Roland (1)
Foekens, John A. (1)
Jones, David T. W. (1)
Lopez-Otin, Carlos (1)
Martin, Sancha (1)
Pearson, John V. (1)
Puente, Xose S. (1)
Richardson, Andrea L ... (1)
Teague, Jon W. (1)
Totoki, Yasushi (1)
Vincent-Salomon, Ann ... (1)
Zucman-Rossi, Jessic ... (1)
Futreal, P. Andrew (1)
Lichter, Peter (1)
Grimmond, Sean M. (1)
Shibata, Tatsuhiro (1)
Pfister, Stefan M. (1)
Campbell, Peter J. (1)
visa färre...
Lärosäte
Uppsala universitet (3)
Lunds universitet (2)
Karolinska Institutet (2)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (2)
Naturvetenskap (1)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy