SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pham Vi) "

Sökning: WFRF:(Pham Vi)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pham, Em Canh, et al. (författare)
  • N,2,6-Trisubstituted 1H-benzimidazole derivatives as a new scaffold of antimicrobial and anticancer agents : design, synthesis, in vitro evaluation, and in silico studies
  • 2023
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 13:1, s. 399-420
  • Tidskriftsartikel (refereegranskat)abstract
    • Compounds containing benzimidazole moiety occupy privileged chemical space for discovering new bioactive substances. In continuation of our recent work, 69 benzimidazole derivatives were designed and synthesized with good to excellent yields of 46-99% using efficient synthesis protocol i.e. sodium metabisulfite catalyzed condensation of aromatic aldehydes with o-phenylenediamines to form 2-arylbenzimidazole derivatives followed by N-alkylation by conventional heating or microwave irradiation for diversification. Potent antibacterial compounds against MSSA and MRSA were discovered such as benzimidazole compounds 3k (2-(4-nitrophenyl), N-benzyl), 3l (2-(4-chlorophenyl), N-(4-chlorobenzyl)), 4c (2-(4-chlorophenyl), 6-methyl, N-benzyl), 4g (2-(4-nitrophenyl), 6-methyl, N-benzyl), and 4j (2-(4-nitrophenyl), 6-methyl, N-(4-chlorobenzyl)) with MIC of 4-16 mu g mL(-1). In addition, compound 4c showed good antimicrobial activities (MIC = 16 mu g mL(-1)) against the bacteria strains Escherichia coli and Streptococcus faecalis. Moreover, compounds 3k, 3l, 4c, 4g, and 4j have been found to kill HepG2, MDA-MB-231, MCF7, RMS, and C26 cancer cells with low mu M IC50 (2.39-10.95). These compounds showed comparable drug-like properties as ciprofloxacin, fluconazole, and paclitaxel in computational ADMET profiling. Finally, docking studies were used to assess potential protein targets responsible for their biological activities. Especially, we found that DHFR is a promising target both in silico and in vitro with compound 4c having IC50 of 2.35 mu M.
  •  
2.
  • Diwakarla, Shanti, et al. (författare)
  • Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures
  • 2016
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 7:10, s. 1383-1392
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of TRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors:A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
  •  
3.
  • Diwakarla, Shanti, et al. (författare)
  • Binding to and Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Macrocyclic Disulfides Enhances Spine Density
  • 2016
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 89:4, s. 413-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin IV (Ang IV) and related peptide analogues, as well as non-peptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocylic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N-terminal of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09 and of Ang IV in either the extended or γ-turn conformation at the C-terminal to human IRAP were predicted by docking and molecular dynamics (MD) simulations. The binding free energies calculated with the linear interaction energy (LIE) method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
  •  
4.
  •  
5.
  • Lam, Thua-Phong, et al. (författare)
  • Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase : a systematic review of in vitro studies
  • 2024
  • Ingår i: NATURAL PRODUCTS AND BIOPROSPECTING. - : Springer. - 2192-2195 .- 2192-2209. ; 14:1
  • Forskningsöversikt (refereegranskat)abstract
    • Diabetes mellitus remains a major global health issue, and great attention is directed at natural therapeutics. This systematic review aimed to assess the potential of flavonoids as antidiabetic agents by investigating their inhibitory effects on alpha-glucosidase and alpha-amylase, two key enzymes involved in starch digestion. Six scientific databases (PubMed, Virtual Health Library, EMBASE, SCOPUS, Web of Science, and WHO Global Index Medicus) were searched until August 21, 2022, for in vitro studies reporting IC50 values of purified flavonoids on alpha-amylase and alpha-glucosidase, along with corresponding data for acarbose as a positive control. A total of 339 eligible articles were analyzed, resulting in the retrieval of 1643 flavonoid structures. These structures were rigorously standardized and curated, yielding 974 unique compounds, among which 177 flavonoids exhibited inhibition of both alpha-glucosidase and alpha-amylase are presented. Quality assessment utilizing a modified CONSORT checklist and structure-activity relationship (SAR) analysis were performed, revealing crucial features for the simultaneous inhibition of flavonoids against both enzymes. Moreover, the review also addressed several limitations in the current research landscape and proposed potential solutions. The curated datasets are available online at https://github.com/MedChemUMP/FDIGA.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy