SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Philipson Louis) "

Sökning: WFRF:(Philipson Louis)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chung, Wendy K., et al. (författare)
  • Precision medicine in diabetes : a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 63:9, s. 1671-1693
  • Tidskriftsartikel (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science and technology has enabled the generation of new insights into the phenotype known as ‘diabetes’. Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment) and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e. monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realise its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
2.
  • Chung, Wendy K., et al. (författare)
  • Precision Medicine in Diabetes : A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 1935-5548 .- 0149-5992. ; 43:7, s. 1617-1635
  • Forskningsöversikt (refereegranskat)abstract
    • The convergence of advances in medical science, human biology, data science, and technology has enabled the generation of new insights into the phenotype known as "diabetes." Increased knowledge of this condition has emerged from populations around the world, illuminating the differences in how diabetes presents, its variable prevalence, and how best practice in treatment varies between populations. In parallel, focus has been placed on the development of tools for the application of precision medicine to numerous conditions. This Consensus Report presents the American Diabetes Association (ADA) Precision Medicine in Diabetes Initiative in partnership with the European Association for the Study of Diabetes (EASD), including its mission, the current state of the field, and prospects for the future. Expert opinions are presented on areas of precision diagnostics and precision therapeutics (including prevention and treatment), and key barriers to and opportunities for implementation of precision diabetes medicine, with better care and outcomes around the globe, are highlighted. Cases where precision diagnosis is already feasible and effective (i.e., monogenic forms of diabetes) are presented, while the major hurdles to the global implementation of precision diagnosis of complex forms of diabetes are discussed. The situation is similar for precision therapeutics, in which the appropriate therapy will often change over time owing to the manner in which diabetes evolves within individual patients. This Consensus Report describes a foundation for precision diabetes medicine, while highlighting what remains to be done to realize its potential. This, combined with a subsequent, detailed evidence-based review (due 2022), will provide a roadmap for precision medicine in diabetes that helps improve the quality of life for all those with diabetes.
  •  
3.
  •  
4.
  • Riddle, Matthew C., et al. (författare)
  • Monogenic diabetes : From genetic insights to population-based precision in care. reflections from a diabetes care editors’ expert forum
  • 2020
  • Ingår i: Diabetes Care. - : American Diabetes Association. - 0149-5992 .- 1935-5548. ; 43:12, s. 3117-3128
  • Tidskriftsartikel (refereegranskat)abstract
    • Individualization of therapy based on a person’s specific type of diabetes is one key element of a “precision medicine” approach to diabetes care. However, applying such an approach remains difficult because of barriers such as disease heterogeneity, difficulties in accurately diagnosing different types of diabetes, multiple genetic influences, incomplete understanding of pathophysiology, limitations of current therapies, and environmental, social, and psychological factors. Monogenic diabetes, for which single gene mutations are causal, is the category most suited to a precision approach. The pathophysiological mechanisms of monogenic diabetes are understood better than those of any other form of diabetes. Thus, this category offers the advantage of accurate diagnosis of nonoverlapping etiological subgroups for which specific interventions can be applied. Although representing a small proportion of all diabetes cases, monogenic forms present an opportunity to demonstrate the feasibility of precision medicine strategies. In June 2019, the editors of Diabetes Care convened a panel of experts to discuss this opportunity. This article summarizes the major themes that arose at that forum. It presents an overview of the common causes of monogenic diabetes, describes some challenges in identifying and treating these disorders, and reports experience with various approaches to screening, diagnosis, and management. This article complements a larger American Diabetes Association effort supporting implementation of precision medicine for monogenic diabetes, which could serve as a platform for a broader initiative to apply more precise tactics to treating the more common forms of diabetes.
  •  
5.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
6.
  • Wuttke, Anne, 1984- (författare)
  • Lipid Signalling Dynamics in Insulin-secreting β-cells
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Certain membrane lipids are involved in intracellular signalling processes, among them phosphoinositides and diacylglycerol (DAG). They mediate a variety of functions, including the effects of nutrients and neurohormonal stimuli on insulin secretion from pancreatic β-cells. To ensure specificity of the signal, their concentrations are maintained under tight spatial and temporal control. Here, live-cell imaging techniques were employed to investigate spatio-temporal aspects of lipid signalling in the plasma membrane of insulin-secreting β-cells. The concentration of phosphatidylinositol 4-phosphate [PtdIns(4)P] increased after stimulation with glucose or Gq protein-coupled receptor agonists. The glucose effect was Ca2+-dependent, whereas the receptor response was mediated by isoforms of novel protein kinase C (PKC). The increases in PtdIns(4)P were paralleled by lowerings of the phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] concentration. This relationship was not caused by conversion of PtdIns(4,5)P2 to PtdIns(4)P but rather reflected independent regulation of the two lipids. Stimulation of β-cells with glucose or a high K+ concentration induced pronounced, repetitive increases in plasma-membrane DAG concentration, which were locally restricted and lasted only for a few seconds. This pattern was caused by exocytotic release of ATP, which feedback-activates purinergic P2Y1-receptors and stimulates local phospholipase C-mediated DAG generation. Despite their short durations the DAG spikes triggered local activation of PKC. Novel PKCs were recruited to the plasma membrane both after glucose and muscarinic receptor stimulation. While the glucose-induced translocation was synchronized with DAG spiking, muscarinic stimulation induced sustained elevation of the DAG concentration and stable membrane association of the kinase. Also conventional PKCs translocated to the membrane after glucose and receptor stimulation. The glucose-induced response was complex with sustained membrane association mirroring the cytoplasmic Ca2+ concentration, and superimposed brief recurring translocations caused by DAG. Interruption of the purinergic feedback loop underlying DAG spiking suppressed insulin secretion. Since the DAG spikes reflected exocytosis events, a single-cell secretion assay was established, which allowed continuous recording of secretion dynamics from many cells in parallel over extended periods of time. With this approach it was possible to demonstrate that insulin exerts negative feedback on its own release via a phosphatidylinositol 3,4,5-trisphosphate-dependent mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy