SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Phuah Chia Ling) "

Sökning: WFRF:(Phuah Chia Ling)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anderson, Christopher D., et al. (författare)
  • Genetic variants in CETP increase risk of intracerebral hemorrhage
  • 2016
  • Ingår i: Annals of Neurology. - : Wiley. - 1531-8249 .- 0364-5134. ; 80:5, s. 730-740
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740.
  •  
2.
  • Bonkhoff, Anna K, et al. (författare)
  • The relevance of rich club regions for functional outcome post-stroke is enhanced in women.
  • 2023
  • Ingår i: Human brain mapping. - : Wiley. - 1097-0193 .- 1065-9471. ; 44:4, s. 1579-1592
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to investigate the influence of stroke lesions in predefined highly interconnected (rich-club) brain regions on functional outcome post-stroke, determine their spatial specificity and explore the effects of biological sex on their relevance. We analyzed MRI data recorded at index stroke and ~3-months modified Rankin Scale (mRS) data from patients with acute ischemic stroke enrolled in the multisite MRI-GENIE study. Spatially normalized structural stroke lesions were parcellated into 108 atlas-defined bilateral (sub)cortical brain regions. Unfavorable outcome (mRS>2) was modeled in a Bayesian logistic regression framework. Effects of individual brain regions were captured as two compound effects for (i) six bilateral rich club and (ii) all further non-rich club regions. In spatial specificity analyses, we randomized the split into "rich club" and "non-rich club" regions and compared the effect of the actual rich club regions to the distribution of effects from 1000 combinations of six random regions. In sex-specific analyses, we introduced an additional hierarchical level in our model structure to compare male and female-specific rich club effects. A total of 822 patients (age: 64.7[15.0], 39% women) were analyzed. Rich club regions had substantial relevance in explaining unfavorable functional outcome (mean of posterior distribution: 0.08, area under the curve: 0.8). In particular, the rich club-combination had a higher relevance than 98.4% of random constellations. Rich club regions were substantially more important in explaining long-term outcome in women than in men. All in all, lesions in rich club regions were associated with increased odds of unfavorable outcome. These effects were spatially specific and more pronounced in women.
  •  
3.
  • Bretzner, Martin, et al. (författare)
  • Radiomics-Derived Brain Age Predicts Functional Outcome After Acute Ischemic Stroke.
  • 2023
  • Ingår i: Neurology. - 1526-632X .- 0028-3878. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • While chronological age is one of the most influential determinants of poststroke outcomes, little is known of the impact of neuroimaging-derived biological "brain age." We hypothesized that radiomics analyses of T2-FLAIR images texture would provide brain age estimates and that advanced brain age of patients with stroke will be associated with cardiovascular risk factors and worse functional outcomes.We extracted radiomics from T2-FLAIR images acquired during acute stroke clinical evaluation. Brain age was determined from brain parenchyma radiomics using an ElasticNet linear regression model. Subsequently, relative brain age (RBA), which expresses brain age in comparison with chronological age-matched peers, was estimated. Finally, we built a linear regression model of RBA using clinical cardiovascular characteristics as inputs and a logistic regression model of favorable functional outcomes taking RBA as input.We reviewed 4,163 patients from a large multisite ischemic stroke cohort (mean age = 62.8 years, 42.0% female patients). T2-FLAIR radiomics predicted chronological ages (mean absolute error = 6.9 years, r = 0.81). After adjustment for covariates, RBA was higher and therefore described older-appearing brains in patients with hypertension, diabetes mellitus, a history of smoking, and a history of a prior stroke. In multivariate analyses, age, RBA, NIHSS, and a history of prior stroke were all significantly associated with functional outcome (respective adjusted odds ratios: 0.58, 0.76, 0.48, 0.55; all p-values < 0.001). Moreover, the negative effect of RBA on outcome was especially pronounced in minor strokes.T2-FLAIR radiomics can be used to predict brain age and derive RBA. Older-appearing brains, characterized by a higher RBA, reflect cardiovascular risk factor accumulation and are linked to worse outcomes after stroke.
  •  
4.
  • Falcone, Guido J., et al. (författare)
  • Genetically Elevated LDL Associates with Lower Risk of Intracerebral Hemorrhage
  • 2020
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 88:1, s. 56-66
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Observational studies point to an inverse correlation between low-density lipoprotein (LDL) cholesterol levels and risk of intracerebral hemorrhage (ICH), but it remains unclear whether this association is causal. We tested the hypothesis that genetically elevated LDL is associated with reduced risk of ICH. Methods: We constructed one polygenic risk score (PRS) per lipid trait (total cholesterol, LDL, high-density lipoprotein [HDL], and triglycerides) using independent genomewide significant single nucleotide polymorphisms (SNPs) for each trait. We used data from 316,428 individuals enrolled in the UK Biobank to estimate the effect of each PRS on its corresponding trait, and data from 1,286 ICH cases and 1,261 matched controls to estimate the effect of each PRS on ICH risk. We used these estimates to conduct Mendelian Randomization (MR) analyses. Results: We identified 410, 339, 393, and 317 lipid-related SNPs for total cholesterol, LDL, HDL, and triglycerides, respectively. All four PRSs were strongly associated with their corresponding trait (all p < 1.00 × 10-100). While one SD increase in the PRSs for total cholesterol (odds ratio [OR] = 0.92; 95% confidence interval [CI] = 0.85–0.99; p = 0.03) and LDL cholesterol (OR = 0.88; 95% CI = 0.81–0.95; p = 0.002) were inversely associated with ICH risk, no significant associations were found for HDL and triglycerides (both p > 0.05). MR analyses indicated that 1mmol/L (38.67mg/dL) increase of genetically instrumented total and LDL cholesterol were associated with 23% (OR = 0.77; 95% CI = 0.65–0.98; p = 0.03) and 41% lower risks of ICH (OR = 0.59; 95% CI = 0.42–0.82; p = 0.002), respectively. Interpretation: Genetically elevated LDL levels were associated with lower risk of ICH, providing support for a potential causal role of LDL cholesterol in ICH. ANN NEUROL 2020.
  •  
5.
  • Lagging, Cecilia, et al. (författare)
  • APOE ε4 is associated with younger age at ischemic stroke onset but not with stroke outcome
  • 2019
  • Ingår i: Neurology. - 1526-632X. ; 93:19, s. 849-853
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke outcome is determined by a complex interplay, where age and stroke severity are predominant predictors. Studies on hemorrhagic stroke indicate that APOE genotype is a predictor of poststroke outcomes,1,2 but results from studies on ischemic stroke are more conflicting.1,3 There is 1 study suggesting an influence of APOE genotype on age at ischemic stroke onset,4 and sex-specific effects on outcome have been reported.5 Taken together, there is a need for larger studies on APOE and ischemic stroke outcomes with integrated information on age, severity, and sex.The 3 common APOE alleles ε2, ε3, and ε4 can be separated by a combination of 2 single nucleotide polymorphisms (SNPs), rs429358 and rs7412. Thus, associations with APOE alleles are not directly captured in a regular genome-wide association study (GWAS), where each SNP is investigated separately. We derived the 3 common APOE alleles and investigated the interplay between APOE, age at ischemic stroke onset, severity, sex, and outcome within a large international collaboration, the Genetics of Ischaemic Stroke Functional Outcome (GISCOME) network.
  •  
6.
  • Phuah, Chia-Ling, et al. (författare)
  • Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke
  • 2017
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 140:10, s. 2663-2672
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary intracerebral haemorrhage and lacunar ischaemic stroke are acute manifestations of progressive cerebral microvascular disease. Current paradigms suggest atherosclerosis is a chronic, dynamic, inflammatory condition precipitated in response to endothelial injury from various environmental challenges. Myeloperoxidase plays a central role in initiation and progression of vascular inflammation, but prior studies linking myeloperoxidase with stroke risk have been inconclusive. We hypothesized that genetic determinants of myeloperoxidase levels influence the development of vascular instability, leading to increased primary intracerebral haemorrhage and lacunar stroke risk. We used a discovery cohort of 1409 primary intracerebral haemorrhage cases and 1624 controls from three studies, an extension cohort of 12 577 ischaemic stroke cases and 25 643 controls from NINDSSiGN, and a validation cohort of 10 307 ischaemic stroke cases and 29 326 controls from METASTROKE Consortium with genome-wide genotyping to test this hypothesis. A genetic risk score reflecting elevated myeloperoxidase levels was constructed from 15 common single nucleotide polymorphisms identified from prior genome-wide studies of circulating myeloperoxidase levels (P55 - 10 6). This genetic risk score was used as the independent variable in multivariable regression models for association with primary intracerebral haemorrhage and ischaemic stroke subtypes. We used fixed effects meta-analyses to pool estimates across studies. We also used Cox regression models in a prospective cohort of 174 primary intracerebral haemorrhage survivors for association with intracerebral haemorrhage recurrence. We present effects of myeloperoxidase elevating single nucleotide polymorphisms on stroke risk per risk allele, corresponding to a one allele increase in the myeloperoxidase increasing genetic risk score. Genetic determinants of elevated circulating myeloperoxidase levels were associated with both primary intracerebral haemorrhage risk (odds ratio, 1.07, P = 0.04) and recurrent intracerebral haemorrhage risk (hazards ratio, 1.45, P = 0.006). In analysis of ischaemic stroke subtypes, the myeloperoxidase increasing genetic risk score was strongly associated with lacunar subtype only (odds ratio, 1.05, P = 0.0012). These results, demonstrating that common genetic variants that increase myeloperoxidase levels increase risk of primary intracerebral haemorrhage and lacunar stroke, directly implicate the myeloperoxidase pathway in the pathogenesis of cerebral small vessel disease. Because genetic variants are not influenced by environmental exposures, these results provide new support for a causal rather than bystander role for myeloperoxidase in the progression of cerebrovascular disease. Furthermore, these results support a rationale for chronic inflammation as a potential modifiable stroke risk mechanism, and suggest that immune-targeted therapies could be useful for treatment and prevention of cerebrovascular disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy