SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Phung Quan Manh) "

Sökning: WFRF:(Phung Quan Manh)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dong, Geng, et al. (författare)
  • H2 binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods
  • 2017
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 19:16, s. 10590-10601
  • Tidskriftsartikel (refereegranskat)abstract
    • [NiFe] hydrogenases catalyse the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied how H2 binds to the active site of this enzyme. Combined quantum mechanical and molecular mechanics (QM/MM) optimisation was performed to obtain the geometries, using both the TPSS and B3LYP density-functional theory (DFT) methods and considering both the singlet and triplet states of the Ni(ii) ion. To get more accurate energies and obtain a detailed account of the surroundings, we performed calculations with 819 atoms in the QM region. Moreover, coupled-cluster calculations with singles, doubles, and perturbatively treated triples (CCSD(T)) and cumulant-approximated second-order perturbation theory based on the density-matrix renormalisation group (DMRG-CASPT2) were carried out using three models to decide which DFT methods give the most accurate structures and energies. Our calculations show that H2 binding to Ni in the singlet state is the most favourable by at least 47 kJ mol-1. In addition, the TPSS functional gives more accurate energies than B3LYP for this system.
  •  
2.
  • Dong, Geng, et al. (författare)
  • Reaction Mechanism of [NiFe] Hydrogenase Studied by Computational Methods
  • 2018
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 57:24, s. 15289-15298
  • Tidskriftsartikel (refereegranskat)abstract
    • [NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.
  •  
3.
  • Manni, Giovanni Li, et al. (författare)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy