SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Piamonteze C.) "

Sökning: WFRF:(Piamonteze C.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chylarecka, D., et al. (författare)
  • Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate
  • 2011
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:4, s. 1295-1301
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling mechanism of magnetic molecules to ferromagnetic surfaces is of scientific interest to design and tune molecular spintronic interfaces utilizing their molecular and surface architecture. Indirect magnetic coupling has been proposed earlier on the basis of density functional theory +U (DFT+U) calculations, for the magnetic coupling of manganese(II) porphyrin (MnP) molecules to thin Co films. Here we provide an experimental X-ray magnetic circular dichroism (XMCD) spectroscopy and scanning tunneling microscopy (STM) study of manganese(III) tetraphenylporphyrin chloride (MnTPPCl) on rough (exhibiting a high density of monatomic steps) and smooth (exhibiting a low density of monatomic steps) thin Co films grown on a Cu(001) single crystal toward the assessment of the magnetic coupling mechanism. After deposition onto the surface, MnTPPCl molecules were found to couple ferromagnetically to both rough and smooth Co substrates. For high molecular coverage, we observed higher XMCD signals at the Mn L-edges on the smooth Co substrate than on the rough Co substrate, as expected for the proposed indirect magnetic coupling mechanism on the basis of its predominance on the flat surface areas. In particular, DFT+U calculations predict a weak ferromagnetic molecule-substrate coupling only if the chloride ion of the MnTPPCl molecule orients away (Co-Mn-Cl) from the Co surface.
  •  
2.
  • Bouravleuv, A. D., et al. (författare)
  • Electronic structure of (In, Mn) As quantum dots buried in GaAs investigated by soft-x-ray ARPES
  • 2016
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 27:42
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic structure of a molecular beam epitaxy-grown system of (In, Mn) As quantum dots (QDs) buried in GaAs is explored with soft-x-ray angle-resolved photoelectron spectroscopy (ARPES) using photon energies around 1 keV. This technique, ideally suited for buried systems, extends the momentum-resolving capabilities of conventional ARPES with enhanced probing depth as well as elemental and chemical state specificity achieved with resonant photoexcitation. The experimental results resolve the dispersive energy bands of the GaAs substrate buried in similar to 2 nm below the surface, and the impurity states (ISs) derived from the substitutional Mn atoms in the (In, Mn) As QDs and oxidized Mn atoms distributed near the surface. An energy shift of the Mn ISs in the QDs compared to (In, Mn) As DMS is attributed to the band offset and proximity effect at the interface with the surrounding GaAs. The absence of any ISs in the vicinity of the VBM relates the electron transport in (In, Mn) As QDs to the prototype (In, Mn) As diluted magnetic semiconductor. The SX-ARPES results are supported by measurements of the shallow core levels under variation of probing depth through photon energy. X-ray absorption measurements identify significant diffusion of interstitial Mn atoms out of the QDs towards the surface, and the role of magnetic circular dichroism is to block the ferromagnetic response of the (In, Mn) As QDs. Possible routes are drawn to tune the growth procedure aiming at practical applications of the (In, Mn) As based systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy