SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pickard Amy) "

Sökning: WFRF:(Pickard Amy)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garcia-Martin, E. Elena, et al. (författare)
  • Sources, Composition, and Export of Particulate Organic Matter Across British Estuaries
  • 2023
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - : American Geophysical Union (AGU). - 2169-8953 .- 2169-8961. ; 128:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Estuaries receive and process a large amount of particulate organic carbon (POC) prior to its export into coastal waters. Studying the origin of this POC is key to understanding the fate of POC and the role of estuaries in the global carbon cycle. Here, we evaluated the concentrations of POC, as well as particulate organic nitrogen (PON), and used stable carbon and nitrogen isotopes to assess their sources across 13 contrasting British estuaries during five different sampling campaigns over 1 year. We found a high variability in POC and PON concentrations across the salinity gradient, reflecting inputs, and losses of organic material within the estuaries. Catchment land cover appeared to influence the contribution of POC to the total organic carbon flux from the estuary to coastal waters, with POC contributions >36% in estuaries draining catchments with a high percentage of urban/suburban land, and <11% in estuaries draining catchments with a high peatland cover. There was no seasonal pattern in the isotopic composition of POC and PON, suggesting similar sources for each estuary over time. Carbon isotopic ratios were depleted (-26.7 +/- 0.42 parts per thousand, average +/- sd) at the lowest salinity waters, indicating mainly terrigenous POC (TPOC). Applying a two-source mixing model, we observed high variability in the contribution of TPOC at the highest salinity waters between estuaries, with a median value of 57%. Our results indicate a large transport of terrigenous organic carbon into coastal waters, where it may be buried, remineralized, or transported offshore. Plain Language Summary Estuaries transport and process a large amount terrigenous particulate organic matter (i.e., carbon and nitrogen) prior to its export to coastal waters. In order to understand the fate of organic carbon and the role of estuaries in the global carbon cycle it is essential to improve our knowledge on its composition, origin, and amount of carbon transported. We quantified the elemental concentrations and stable isotopes composition of carbon and nitrogen to quantify the amount of terrigenous particulate organic matter transported by 13 British estuaries, which drain catchments of diverse land cover under different hydrological conditions. We found a great variability in particulate organic carbon (POC) and particulate organic nitrogen concentrations across the salinity gradient, implying inputs, and losses of material within the estuaries. Each estuary had similar sources of particulate material throughout the year. In most of the estuaries, the POC had a terrigenous origin at the lowest salinity waters. The terrigenous organic carbon contribution decreased toward coastal waters with an average contribution of 57% at the highest salinity waters, indicating a large transport of terrigenous organic carbon into coastal waters.
  •  
2.
  •  
3.
  • Koebsch, Franziska, et al. (författare)
  • Refining the role of phenology in regulating gross ecosystem productivity across European peatlands
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:2, s. 876-887
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of plant phenology as a regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as a distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant phenologically sensitive phases in high latitude and high altitude regions.
  •  
4.
  • Patterson, Nick, et al. (författare)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
5.
  • Ruyle, Bridger J., et al. (författare)
  • Interlaboratory Comparison of Extractable Organofluorine Measurements in Groundwater and Eel (Anguilla rostrata) : Recommendations for Methods Standardization
  • 2023
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 57:48, s. 20159-20168
  • Tidskriftsartikel (refereegranskat)abstract
    • Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.
  •  
6.
  • Tye, Andrew M., et al. (författare)
  • Dissolved inorganic carbon export from rivers of Great Britain : Spatial distribution and potential catchment-scale controls
  • 2022
  • Ingår i: Journal of Hydrology. - : Elsevier. - 0022-1694 .- 1879-2707. ; 615
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved inorganic carbon (DIC) fluxes from the land to ocean have been quantified for many rivers globally. However, CO2 fluxes to the atmosphere from inland waters are quantitatively significant components of the global carbon cycle that are currently poorly constrained. Understanding, the relative contributions of natural and human-impacted processes on the DIC cycle within catchments may provide a basis for developing improved management strategies to mitigate free CO2 concentrations in rivers and subsequent evasion to the atmosphere. Here, a large, internally consistent dataset collected from 41 catchments across Great Britain (GB), accounting for ∼36% of land area (∼83,997 km2) and representative of national land cover, was used to investigate catchment controls on riverine dissolved inorganic carbon (DIC), bicarbonate (HCO3−) and free CO2 concentrations, fluxes to the coastal sea and annual yields per unit area of catchment. Estimated DIC flux to sea for the survey catchments was 647 kt DIC yr−1 which represented 69% of the total dissolved carbon flux from these catchments. Generally, those catchments with large proportions of carbonate and sedimentary sandstone were found to deliver greater DIC and HCO3− to the ocean. The calculated mean free CO2 yield for survey catchments (i.e. potential CO2 emission to the atmosphere) was 0.56 t C km−2 yr−1. Regression models demonstrated that whilst river DIC (R2 = 0.77) and HCO3− (R2 = 0.77) concentrations are largely explained by the geology of the landmass, along with a negative correlation to annual precipitation, free CO2 concentrations were strongly linked to catchment macronutrient status. Overall, DIC dominates dissolved C inputs to coastal waters, meaning that estuarine carbon dynamics are sensitive to underlying geology and therefore are likely to be reasonably constant. In contrast, potential losses of carbon to the atmosphere via dissolved CO2, which likely constitute a significant fraction of net terrestrial ecosystem production and hence the national carbon budget, may be amenable to greater direct management via altering patterns of land use.
  •  
7.
  • Williamson, Jennifer L., et al. (författare)
  • Landscape controls on riverine export of dissolved organic carbon from Great Britain
  • 2021
  • Ingår i: Biogeochemistry. - : Springer Science and Business Media LLC. - 0168-2563 .- 1573-515X.
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissolved organic carbon (DOC) export from land to ocean via rivers is a significant term in the global C cycle, and has been modified in many areas by human activity. DOC exports from large global rivers are fairly well quantified, but those from smaller river systems, including those draining oceanic regions, are generally under-represented in global syntheses. Given that these regions typically have high runoff and high peat cover, they may exert a disproportionate influence on the global land–ocean DOC export. Here we describe a comprehensive new assessment of the annual riverine DOC export to estuaries across the island of Great Britain (GB), which spans the latitude range 50–60° N with strong spatial gradients of topography, soils, rainfall, land use and population density. DOC yields (export per unit area) were positively related to and best predicted by rainfall, peat extent and forest cover, but relatively insensitive to population density or agricultural development. Based on an empirical relationship with land use and rainfall we estimate that the DOC export from the GB land area to the freshwater-seawater interface was 1.15 Tg C year−1 in 2017. The average yield for GB rivers is 5.04 g C m−2 year−1, higher than most of the world’s major rivers, including those of the humid tropics and Arctic, supporting the conclusion that under-representation of smaller river systems draining peat-rich areas could lead to under-estimation of the global land–ocean DOC export. The main anthropogenic factor influencing the spatial distribution of GB DOC exports appears to be upland conifer plantation forestry, which is estimated to have raised the overall DOC export by 0.168 Tg C year−1. This is equivalent to 15% of the estimated current rate of net CO2 uptake by British forests. With the UK and many other countries seeking to expand plantation forest cover for climate change mitigation, this ‘leak in the ecosystem’ should be incorporated in future assessments of the CO2 sequestration potential of forest planting strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy