SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Picotti P) "

Sökning: WFRF:(Picotti P)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Glasbey, JC, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • 2021
  • swepub:Mat__t
  •  
3.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
4.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
5.
  •  
6.
  • Boersema, P. J., et al. (författare)
  • Biology/Disease-Driven Initiative on Protein-Aggregation Diseases of the Human Proteome Project: Goals and Progress to Date
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:12, s. 4072-4084
  • Tidskriftsartikel (refereegranskat)abstract
    • The Biology/Disease-driven (B/D) working groups of the Human Proteome Project are alliances of research groups aimed at developing or improving proteomic tools to support specific biological or disease-related research areas. Here, we describe the activities and progress to date of the B/D working group focused on protein aggregation diseases (PADs). PADs are characterized by the intra- or extracellular accumulation of aggregated proteins and include devastating diseases such as Parkinson's and Alzheimer's disease and systemic amyloidosis. The PAD B/D working group aims for the development of proteomic assays for the quantification of aggregation-prone proteins involved in PADs to support basic and clinical research on PADs. Because the proteins in PADs undergo aberrant conformational changes, a goal is to quantitatively resolve altered protein structures and aggregation states in complex biological specimens. We have developed protein-extraction protocols and a set of mass spectrometric (MS) methods that enable the detection and quantification of proteins involved in the systemic and localized amyloidosis and the probing of aberrant protein conformational transitions in cell and tissue extracts. In several studies, we have demonstrated the potential of MS-based proteomics approaches for specific and sensitive clinical diagnoses and for the subtyping of PADs. The developed methods have been detailed in both protocol papers and manuscripts describing applications to facilitate implementation by nonspecialized laboratories, and assay coordinates are shared through public repositories and databases. Clinicians actively involved in the PAD working group support the transfer to clinical practice of the developed methods, such as assays to quantify specific disease related proteins and their fragments in biofluids and multiplexed MS-based methods for the diagnosis and typing of systemic amyloidosis. We believe that the increasing availability of tools to precisely measure proteins involved in PADs will positively impact research on the molecular bases of these diseases and support early disease diagnosis and a more-confident subtyping.
  •  
7.
  •  
8.
  • Kanfer, G, et al. (författare)
  • Mitotic redistribution of the mitochondrial network by Miro and Cenp-F
  • 2015
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6, s. 8015-
  • Tidskriftsartikel (refereegranskat)abstract
    • Although chromosome partitioning during mitosis is well studied, the molecular mechanisms that allow proper segregation of cytoplasmic organelles in human cells are poorly understood. Here we show that mitochondria interact with growing microtubule tips and are transported towards the daughter cell periphery at the end of mitosis. This phenomenon is promoted by the direct and cell cycle-dependent interaction of the mitochondrial protein Miro and the cytoskeletal-associated protein Cenp-F. Cenp-F is recruited to mitochondria by Miro at the time of cytokinesis and associates with microtubule growing tips. Cells devoid of Cenp-F or Miro show decreased spreading of the mitochondrial network as well as cytokinesis-specific defects in mitochondrial transport towards the cell periphery. Thus, Miro and Cenp-F promote anterograde mitochondrial movement and proper mitochondrial distribution in daughter cells.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy