SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pietiläinen Kirsi H.) "

Sökning: WFRF:(Pietiläinen Kirsi H.)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artigas Soler, María, et al. (författare)
  • Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function.
  • 2011
  • Ingår i: Nature genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:11, s. 1082-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulmonary function measures reflect respiratory health and are used in the diagnosis of chronic obstructive pulmonary disease. We tested genome-wide association with forced expiratory volume in 1 second and the ratio of forced expiratory volume in 1 second to forced vital capacity in 48,201 individuals of European ancestry with follow up of the top associations in up to an additional 46,411 individuals. We identified new regions showing association (combined P < 5 × 10(-8)) with pulmonary function in or near MFAP2, TGFB2, HDAC4, RARB, MECOM (also known as EVI1), SPATA9, ARMC2, NCR3, ZKSCAN3, CDC123, C10orf11, LRP1, CCDC38, MMP15, CFDP1 and KCNE2. Identification of these 16 new loci may provide insight into the molecular mechanisms regulating pulmonary function and into molecular targets for future therapy to alleviate reduced lung function.
  •  
2.
  • Heid, Iris M, et al. (författare)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Tidskriftsartikel (refereegranskat)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
3.
  • Lango Allen, Hana, et al. (författare)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
4.
  • Loth, Daan W, et al. (författare)
  • Genome-wide association analysis identifies six new loci associated with forced vital capacity
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46, s. 669-677
  • Tidskriftsartikel (refereegranskat)abstract
    • Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10(-8)) with FVC in or near EFEMP1, BMP6, MIR129-2-HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.
  •  
5.
  • Fall, Tove, et al. (författare)
  • Age- and sex-specific causal effects of adiposity on cardiovascular risk factors
  • 2015
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 64:5, s. 1841-1852
  • Tidskriftsartikel (refereegranskat)abstract
    • Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors.
  •  
6.
  • Li, Chen, et al. (författare)
  • Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length
  • 2020
  • Ingår i: American Journal of Human Genetics. - : CELL PRESS. - 0002-9297 .- 1537-6605. ; 106:3, s. 389-404
  • Tidskriftsartikel (refereegranskat)abstract
    • Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.
  •  
7.
  • Imboden, Medea, et al. (författare)
  • Epigenome-wide association study of lung function level and its change
  • 2019
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 54:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous reports link differential DNA methylation (DNAme) to environmental exposures that are associated with lung function. Direct evidence on lung function DNAme is, however, limited. We undertook an agnostic epigenome-wide association study (EWAS) on pre-bronchodilation lung function and its change in adults.In a discovery-replication EWAS design, DNAme in blood and spirometry were measured twice, 6-15 years apart, in the same participants of three adult population-based discovery cohorts (n=2043). Associated DNAme markers (p<5×10-7) were tested in seven replication cohorts (adult: n=3327; childhood: n=420). Technical bias-adjusted residuals of a regression of the normalised absolute β-values on control probe-derived principle components were regressed on level and change of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and their ratio (FEV1/FVC) in the covariate-adjusted discovery EWAS. Inverse-variance-weighted meta-analyses were performed on results from discovery and replication samples in all participants and never-smokers.EWAS signals were enriched for smoking-related DNAme. We replicated 57 lung function DNAme markers in adult, but not childhood samples, all previously associated with smoking. Markers not previously associated with smoking failed replication. cg05575921 (AHRR (aryl hydrocarbon receptor repressor)) showed the statistically most significant association with cross-sectional lung function (FEV1/FVC: pdiscovery=3.96×10-21 and pcombined=7.22×10-50). A score combining 10 DNAme markers previously reported to mediate the effect of smoking on lung function was associated with lung function (FEV1/FVC: p=2.65×10-20).Our results reveal that lung function-associated methylation signals in adults are predominantly smoking related, and possibly of clinical utility in identifying poor lung function and accelerated decline. Larger studies with more repeat time-points are needed to identify lung function DNAme in never-smokers and in children.
  •  
8.
  • Jelenkovic, Aline, et al. (författare)
  • Associations between birth size and later height from infancy through adulthood : An individual based pooled analysis of 28 twin cohorts participating in the CODATwins project
  • 2018
  • Ingår i: Early Human Development. - : Elsevier BV. - 0378-3782 .- 1872-6232. ; 120, s. 53-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: There is evidence that birth size is positively associated with height in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. Aim: To analyze the associations of birth weight, length and ponderal index with height from infancy through adulthood within mono- and dizygotic twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. Methods: This study is based on the data from 28 twin cohorts in 17 countries. The pooled data included 41,852 complete twin pairs (55% monozygotic and 45% same-sex dizygotic) with information on birth weight and a total of 112,409 paired height measurements at ages ranging from 1 to 69 years. Birth length was available for 19,881 complete twin pairs, with a total of 72,692 paired height measurements. The association between birth size and later height was analyzed at both the individual and within-pair level by linear regression analyses. Results: Within twin pairs, regression coefficients showed that a 1-kg increase in birth weight and a 1-cm increase in birth length were associated with 1.14–4.25 cm and 0.18–0.90 cm taller height, respectively. The magnitude of the associations was generally greater within dizygotic than within monozygotic twin pairs, and this difference between zygosities was more pronounced for birth length. Conclusion: Both genetic and individual-specific environmental factors play a role in the association between birth size and later height from infancy to adulthood, with a larger role for genetics in the association with birth length than with birth weight.
  •  
9.
  • Suomalainen, Anu, et al. (författare)
  • FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study.
  • 2011
  • Ingår i: Lancet neurology. - 1474-4465. ; 10:9, s. 806-818
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised in skeletal muscle and serum in mice with mitochondrial respiratory chain deficiencies. We investigated in a retrospective diagnostic study whether FGF-21 could be a biomarker for human mitochondrial disorders. METHODS: We assessed samples from adults and children with mitochondrial disorders or non-mitochondrial neurological disorders (disease controls) from seven study centres in Europe and the USA, and recruited healthy volunteers (healthy controls), matched for age where possible, from the same centres. We used ELISA to measure FGF-21 concentrations in serum or plasma samples (abnormal values were defined as >200 pg/mL). We compared these concentrations with values for lactate, pyruvate, lactate-to-pyruvate ratio, and creatine kinase in serum or plasma and calculated sensitivity, specificity, and positive and negative predictive values for all biomarkers. FINDINGS: We analysed serum or plasma from 67 patients (41 adults and 26 children) with mitochondrial disorders, 34 disease controls (22 adults and 12 children), and 74 healthy controls. Mean FGF-21 concentrations in serum were 820 (SD 1151) pg/mL in adult and 1983 (1550) pg/mL in child patients with respiratory chain deficiencies and 76 (58) pg/mL in healthy controls. FGF-21 concentrations were high in patients with mitochondrial disorders affecting skeletal muscle but not in disease controls, including those with dystrophies. In patients with abnormal FGF-21 concentrations in serum, the odds ratio of having a muscle-manifesting mitochondrial disease was 132·0 (95% CI 38·7-450·3). For the identification of muscle-manifesting mitochondrial disease, the sensitivity was 92·3% (95% CI 81·5-97·9%) and specificity was 91·7% (84·8-96·1%). The positive and negative predictive values for FGF-21 were 84·2% (95% CI 72·1-92·5%) and 96·1 (90·4-98·9%). The accuracy of FGF-21 to correctly identify muscle-manifesting respiratory chain disorders was better than that for all conventional biomarkers. The area under the receiver-operating-characteristic curve for FGF-21 was 0·95; by comparison, the values for other biomarkers were 0·83 lactate (p=0·037, 0·83 for pyruvate (p=0·015), 0·72 for the lactate-to-pyruvate ratio (p=0·0002), and 0·77 for creatine kinase (p=0·013). INTERPRETATION: Measurement of FGF-21 concentrations in serum identified primary muscle-manifesting respiratory chain deficiencies in adults and children and might be feasible as a first-line diagnostic test for these disorders to reduce the need for muscle biopsy. FUNDING: Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Molecular Medicine Institute of Finland, University of Helsinki, Helsinki University Central Hospital, Academy of Finland, Novo Nordisk, Arvo and Lea Ylppö Foundation.
  •  
10.
  • Yokoyama, Yoshie, et al. (författare)
  • Genetic and environmental factors affecting birth size variation : A pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts
  • 2018
  • Ingår i: International Journal of Epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 47:4, s. 1195-1206
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia) and across birth cohorts, and how gestational age modifies these effects. Methods: Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling. Results: The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased the proportions of shared environmental variance and increased the propositions of unique environmental variance. Genetic variance was similar in the geographical-cultural regions, but shared environmental variance was smaller in East Asia than in Europe and North America and Australia. The total variance and shared environmental variance of birth length and PI were greater from the birth cohort 1990-99 onwards compared with the birth cohorts from 1970-79 to 1980-89. Conclusions: The contribution of genetic factors to birth size is smaller than that of shared environmental factors, which is partly explained by gestational age. Shared environmental variances of birth length and PI were greater in the latest birth cohorts and differed also across geographical-cultural regions. Shared environmental factors are important when explaining differences in the variation of birth size globally and over time.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy