SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pikkarainen Timo) "

Sökning: WFRF:(Pikkarainen Timo)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Yunying, et al. (författare)
  • A regulatory role for macrophage class A scavenger receptors in TLR4-mediated LPS responses.
  • 2010
  • Ingår i: European Journal of Immunology. - : Wiley. - 0014-2980 .- 1521-4141. ; 40:5, s. 1451-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Recognition of microbial components by TLR, key sensors of infection, leads to induction of inflammatory responses. We found that, in vivo, TLR4 engagement by LPS induces up-regulation of the class A scavenger receptors (SR) macrophage receptor with a collagenous structure (MARCO) and SR-A, which occurs, at least in the case of MARCO, via both MyD88-dependent and -independent pathways. When challenging mice with a low dose of LPS followed by a high dose, class A SR-deficient mice showed a higher survival rate than WT mice. This was paired with increased production of IL-10 and anti-LPS Ab, as well as increased activation status of marginal zone B cells. However, the receptors were not crucial for survival when challenging mice i.p. with Neisseria meningitidis or Listeria monocytogenes, but they were found to contribute to microbial capture and clearance. This indicates physiological significance for the up-regulation of class A SR during early stages of bacterial infection. Thus, we believe that we have revealed a mechanism where SR regulate the activation status of the immune system and are involved in balancing a proper immune response to infection. This regulation could also be important in maintaining tolerance since these receptors have been shown to be involved in regulation of self-reactivity.
  •  
2.
  • Liu, Xiao Li, et al. (författare)
  • Characterization of the interactions of the nephrin intracellular domain
  • 2005
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 272:1, s. 228-243
  • Tidskriftsartikel (refereegranskat)abstract
    • Nephrin is a signalling cell-cell adhesion protein of the Ig superfamily and the first identified component of the slit diaphragm that forms the critical and ultimate part of the glomerular ultrafiltration barrier. The extracellular domains of the nephrin molecules form a network of homophilic and heterophilic interactions building the structural scaffold of the slit diaphragm between the podocyte foot processes. The intracellular domain of nephrin is connected indirectly to the actin cytoskeleton, is tyrosine phosphorylated, and mediates signalling from the slit diaphragm into the podocytes. CD2AP, podocin, Fyn kinase, and phosphoinositide 3-kinase are reported intracellular interacting partners of nephrin, although the biological roles of these interactions are unclarified. To characterize the structural properties and protein-protein interactions of the nephrin intracellular domain, we produced a series of recombinant nephrin proteins. These were able to bind all previously identified ligands, although the interaction with CD2AP appeared to be of extremely low stoichiometry. Fyn phosphorylated nephrin proteins efficiently in vitro. This phosphorylation was required for the binding of phosphoinositide 3-kinase, and significantly enhanced binding of Fyn itself. A protein of 190 kDa was found to associate with the immobilized glutathione S-transferase-nephrin. Peptide mass fingerprinting and amino acid sequencing identified this protein as IQGAP1, an effector protein of small GTPases Rac1 and Cdc42 and a putative regulator of cell-cell adherens junctions. IQGAP1 is expressed in podocytes at significant levels, and could be found at the immediate vicinity of the slit diaphragm. However, further studies are needed to confirm the biological significance of this interaction and its occurrence in vivo.
  •  
3.
  • Perisic, Ljubica, et al. (författare)
  • Plekhh2, a novel podocyte protein downregulated in human focal segmental glomerulosclerosis, is involved in matrix adhesion and actin dynamics
  • 2012
  • Ingår i: Kidney International. - : Elsevier BV. - 0085-2538 .- 1523-1755. ; 82:10, s. 1071-1083
  • Tidskriftsartikel (refereegranskat)abstract
    • Pleckstrin homology domain-containing, family H (with MyTH4 domain), member 2 (Plekhh2) is a 1491-residue intracellular protein highly enriched in renal glomerular podocytes for which no function has been ascribed. Analysis of renal biopsies from patients with focal segmental glomerulosclerosis revealed a significant reduction in total podocyte Plekhh2 expression compared to controls. Sequence analysis indicated a putative a-helical coiled-coil segment as the only recognizable domain within the N-terminal half of the polypeptide, while the C-terminal half contains two PH, a MyTH4, and a FERM domain. We identified a phosphatidylinositol-3-phosphate consensus-binding site in the PH1 domain required for Plekhh2 localization to peripheral regions of cell lamellipodia. The N-terminal half of Plekkh2 is not necessary for lamellipodial targeting but mediates self-association. Yeast two-hybrid screening showed that Plekhh2 directly interacts through its FERM domain with the focal adhesion protein Hic-5 and actin. Plekhh2 and Hic-5 coprecipitated and colocalized at the soles of podocyte foot processes in situ and Hic-5 partially relocated from focal adhesions to lamellipodia in Plekhh2-expressing podocytes. In addition, Plekhh2 stabilizes the cortical actin cytoskeleton by attenuating actin depolymerization. Our findings suggest a structural and functional role for Plekhh2 in the podocyte foot processes.
  •  
4.
  • Perisic, Ljubica, et al. (författare)
  • Schip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin
  • 2015
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. Results By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 inactivation in zebrafish by morpholino knock-down results in foot process disorganization and podocyte loss leading to proteinuria. In cultured podocytes Schip1 localizes to cortical actin-rich regions of lamellipodia, where it forms a complex with Nherf2 and ezrin, proteins known to participate in actin remodeling stimulated by PDGF beta signaling. Mechanistically, overexpression of Schip1 in vitro causes accumulation of cortical F-actin with dissolution of transversal stress fibers and promotes cell migration in response to PDGF-BB stimulation. Upon actin disassembly by latrunculin A treatment, Schip1 remains associated with the residual F-actin-containing structures, suggesting a functional connection with actin cytoskeleton possibly via its interaction partners. A similar assay with cytochalasin D points to stabilization of cortical actin cytoskeleton in Schip1 overexpressing cells by attenuation of actin depolymerisation. Conclusions Schip1 is a novel glomerular protein predominantly expressed in podocytes, necessary for the zebrafish pronephros development and function. Schip1 associates with the cortical actin cytoskeleton network and modulates its dynamics in response to PDGF signaling via interaction with the Nherf2/ezrin complex. Its implication in proteinuric diseases remains to be further investigated.
  •  
5.
  • Sun, Ying, et al. (författare)
  • Glomerular Transcriptome Changes Associated with Lipopolysaccharide-Induced Proteinuria
  • 2009
  • Ingår i: American Journal of Nephrology. - : S. Karger AG. - 0250-8095 .- 1421-9670. ; 29:6, s. 558-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Global gene expression patterns have recently been characterized in normal glomeruli, but gene expression changes that accompany glomerular disease remain poorly characterized. Method: Here, we mapped global glomerular gene expression profile changes occurring in conjunction with lipopolysaccharide (LPS)-induced proteinuria in mice. Results: We observed dramatic transcriptional reprogramming in glomeruli in response to LPS, representing some 20% of all genes and about 45% of the genes that are normally highly expressed in glomeruli. Bioinformatic analysis revealed significant changes in transcripts encoding proteins involved in the regulation of adherence junctions, actin cytoskeleton and survival in podocytes. In the LPS-treated mice, we observed dysregulation of genes expressed in glomerular endothelial and mesangial cells and in podocytes, there was also a significant decrease in podocyte number. Moreover, collagen alpha 1, alpha 2 (IV) and laminin 10 (laminin alpha 5 beta 1 gamma 1), which are expressed in immature glomeruli, were upregulated in the glomeruli of LPS-treated mice, suggesting remodeling of the glomerular basement membrane and activation of mesangial cells. By superimposing the LPS-induced changes onto GlomNet, a protein-protein interaction network was predicted for podocyte proteins affected by LPS. Conclusions: The detected changes in glomerular gene expression and their involvement in protein interaction networks provide putative markers for early and transient glomerular injury and proteinuria. Copyright (c) 2009 S. Karger AG, Basel
  •  
6.
  • Wermeling, Fredrik, et al. (författare)
  • Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus
  • 2007
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 204:10, s. 2259-2265
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptotic cells are considered to be a major source for autoantigens in autoimmune diseases such as systemic lupus erythematosus (SLE). In agreement with this, defective clearance of apoptotic cells has been shown to increase disease susceptibility. Still, little is known about how apoptotic cell-derived self-antigens activate autoreactive B cells and where this takes place. In this study, we find that apoptotic cells are taken up by specific scavenger receptors expressed on macrophages in the splenic marginal zone and that mice deficient in these receptors have a lower threshold for autoantibody responses. Furthermore, antibodies against scavenger receptors are found before the onset of clinical symptoms in SLE-prone mice, and they are also found in diagnosed SLE patients. Our findings describe a novel mechanism where autoantibodies toward scavenger receptors can alter the response to apoptotic cells, affect tolerance, and thus promote disease progression. Because the autoantibodies can be detected before onset of disease in mice, they could have predictive value as early indicators of SLE.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy