SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pilate Gilles) "

Search: WFRF:(Pilate Gilles)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Axelsson, Petter, et al. (author)
  • Can leaf litter from genetically modified trees affect aquatic ecosystems?
  • 2010
  • In: Ecosystems (New York. Print). - : Springer Science and Business Media LLC. - 1432-9840 .- 1435-0629. ; 13:7, s. 1049-1059
  • Journal article (peer-reviewed)abstract
    • In addition to potential benefits, biotechnology in silviculture may also be associated with environmental considerations, including effects on organisms associated with the living tree and on ecosystems and processes dependent on tree residue. We examined whether genetic modification of lignin characteristics (CAD and COMT) in Populus sp. affected leaf litter quality, the decomposition of leaf litter, and the assemblages of aquatic insects colonizing the litter in three natural streams. The decomposition of leaf litter from one of the genetically modified (GM) lines (CAD) was affected in ways that were comparable over streams and harvest dates. After 84 days in streams, CAD-litter had lost approximately 6.1% less mass than the non-GM litter. Genetic modification also affected the concentration of phenolics and carbon in the litter but this only partially explained the decomposition differences, suggesting that other factors were also involved. Insect community analyses comparing GM and non-GM litter showed no significant differences, and the two GM litters showed differences only in the 84-day litterbags. The total abundance and species richness of insects were also similar on GM and non-GM litter. The results presented here suggest that genetic modifications in trees can influence litter quality and thus have a potential to generate effects that can cross ecosystem boundaries and influence ecosystem processes not directly associated with the tree. Overall, the realized ecological effects of the GM tree varieties used here were nevertheless shown to be relatively small.
  •  
2.
  • Axelsson, Petter, et al. (author)
  • Leaf ontogeny interacts with Bt modification to affect innate resistance in GM aspens
  • 2011
  • In: Chemoecology. - : Springer Science and Business Media LLC. - 0937-7409 .- 1423-0445. ; 21:3, s. 161-169
  • Journal article (peer-reviewed)abstract
    • Bioassays with a non-target slug (Deroceras spp.) and chemical analyses were conducted using leaf tissue from already existing genetically modified insect-resistant aspen trees to examine whether genetic modifications to produce Bacillus thuringiensis (Bt) toxins could affect plant phytochemistry, which in turn might influence plant-herbivore interactions. Three major patterns emerged. First, two independent modifications for Bt resistance affected the phytochemical profiles of leaves such that both were different from the isogenic wild-type (Wt) control leaves, but also different from each other. Among the contributors to these differences are substances with a presumed involvement in resistance, such as salicortin and soluble condensed tannins. Second, bioassays with one Bt line suggest that the modification somehow affected innate resistance ("Innate" is used here in opposition to the "acquired" Bt resistance) in ways such that slugs preferred Bt over Wt leaves. Third, the preference test suggests that the innate resistance in Bt relative to Wt plants may not be uniformly expressed throughout the whole plant and that leaf ontogeny interacts with the modification to affect resistance. This was manifested through an ontogenetic determined increase in leaf consumption that was more than four times higher in Bt compared to Wt leaves. Our result are of principal importance, as these indicate that genetic modifications can affect innate resistance and thus non-target herbivores in ways that may have commercial and/or environmental consequences. The finding of a modification-ontogeny interaction effect on innate resistance may be especially important in assessments of GM plants with a long lifespan such as trees.
  •  
3.
  •  
4.
  • Hjältén, Joakim, et al. (author)
  • Increased Resistance of Bt Aspens to Phratora vitellinae (Coleoptera) Leads to Increased Plant Growth under Experimental Conditions
  • 2012
  • In: PLOS ONE. - : Public library science. - 1932-6203. ; 7:1
  • Journal article (peer-reviewed)abstract
    • One main aim with genetic modification (GM) of trees is to produce plants that are resistant to various types of pests. The effectiveness of GM-introduced toxins against specific pest species on trees has been shown in the laboratory. However, few attempts have been made to determine if the production of these toxins and reduced herbivory will translate into increased tree productivity. We established an experiment with two lines of potted aspens (Populus tremulaxPopulus tremuloides) which express Bt (Bacillus thuringiensis) toxins and the isogenic wildtype (Wt) in the lab. The goal was to explore how experimentally controlled levels of a targeted leaf beetle Phratora vitellinae (Coleoptera; Chrysomelidae) influenced leaf damage severity, leaf beetle performance and the growth of aspen. Four patterns emerged. Firstly, we found clear evidence that Bt toxins reduce leaf damage. The damage on the Bt lines was significantly lower than for the Wt line in high and low herbivory treatment, respectively. Secondly, Bt toxins had a significant negative effect on leaf beetle survival. Thirdly, the significant decrease in height of the Wt line with increasing herbivory and the relative increase in height of one of the Bt lines compared with the Wt line in the presence of herbivores suggest that this also might translate into increased biomass production of Bt trees. This realized benefit was context-dependent and is likely to be manifested only if herbivore pressure is sufficiently high. However, these herbivore induced patterns did not translate into significant affect on biomass, instead one Bt line overall produced less biomass than the Wt. Fourthly, compiled results suggest that the growth reduction in one Bt line as indicated here is likely due to events in the transformation process and that a hypothesized cost of producing Bt toxins is of subordinate significance.
  •  
5.
  • Hjältén, Joakim, et al. (author)
  • Innate and Introduced Resistance Traits in Genetically Modified Aspen Trees and Their Effect on Leaf Beetle Feeding
  • 2013
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:9, s. e73819-
  • Journal article (peer-reviewed)abstract
    • Genetic modifications of trees may provide many benefits, e. g. increase production, and mitigate climate change and herbivore impacts on forests. However, genetic modifications sometimes result in unintended effects on innate traits involved in plant-herbivore interactions. The importance of intentional changes in plant defence relative to unintentional changes and the natural variation among clones used in forestry has not been evaluated. By a combination of biochemical measurements and bioassays we investigated if insect feeding on GM aspens is more affected by intentional (induction Bt toxins) than of unintentional, non-target changes or clonal differences in innate plant defence. We used two hybrid wildtype clones (Populus tremula x P. tremuloides and Populus tremula x P. alba) of aspen that have been genetically modified for 1) insect resistance (two Bt lines) or 2) reduced lignin properties (two lines COMT and CAD), respectively. Our measurements of biochemical properties suggest that unintended changes by GM modifications (occurring due to events in the transformation process) in innate plant defence (phenolic compounds) were generally smaller but fundamentally different than differences seen among different wildtype clones (e. g. quantitative and qualitative, respectively). However, neither clonal differences between the two wildtype clones nor unintended changes in phytochemistry influenced consumption by the leaf beetle (Phratora vitellinae). By contrast, Bt induction had a strong direct intended effect as well as a post experiment effect on leaf beetle consumption. The latter suggested lasting reduction of beetle fitness following Bt exposure that is likely due to intestinal damage suffered by the initial Bt exposure. We conclude that Bt induction clearly have intended effects on a target species. Furthermore, the effect of unintended changes in innate plant defence traits, when they occur, are context dependent and have in comparison to Bt induction probably less pronounced effect on targeted herbivores.
  •  
6.
  • Toraman, Hilal E., et al. (author)
  • Application of Py-GC/MS coupled with PARAFAC2 and PLS-DA to study fast pyrolysis of genetically engineered poplars
  • 2018
  • In: Journal of Analytical and Applied Pyrolysis. - : Elsevier BV. - 0165-2370. ; 129, s. 101-111
  • Journal article (peer-reviewed)abstract
    • Field-grown genetically engineered and wild-type poplars were pyrolyzed in a micro-pyrolysis (Py-GC/MS) setup under fast pyrolysis conditions. Poplars (Populus tremula x P. alba) down-regulated for cinnamoyl-CoA reductase (CCR), which catalyzes the first step of the monolignol-specific branch of the phenylpropanoid biosynthetic pathway, were grown in field trials in France and harvested after a full rotation of 2 years. The effect of small compositional differences, specifically small shifts in lignin composition and their impact on the bio-oil composition, could not be identified using principal component analysis (PCA), necessitating the use of more advanced analysis techniques. The combination of parallel factor analysis 2 (PARAFAC2) and partial least squares-discriminant analysis (PLS-DA) for detailed characterization and classification of the pyrolysis data enabled the classification of the poplars with a success rate above 99% using the PARAFAC2 scores. This methodology proved to be extremely valuable to identify subtle information in complex datasets, such as the one used in this study. The obtained PLS-DA models were validated by cross-validation, jackknifing and permutation tests in order to ensure that the model was not overfitting the data. PLS-DA showed that down-regulation of CCR disfavored the relative amount of both guaiacyl and syringyl lignin-derived compounds. This study shows that lignin engineering can be a promising strategy to alter the lignin composition of the biomass for the production of high value-added phenolic compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view