SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pillado M.) "

Search: WFRF:(Pillado M.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Obers, Niels A., et al. (author)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • In: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Research review (peer-reviewed)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
2.
  • Barack, Leor, et al. (author)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • In: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Research review (peer-reviewed)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
3.
  • Eilers, S., et al. (author)
  • COMPANION-Towards Co-operative Platoon Management of Heavy-Duty Vehicles
  • 2015
  • In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. - : IEEE. - 9781467365956 ; , s. 1267-1273
  • Conference paper (peer-reviewed)abstract
    • The objective of the EU project COMPANION is to develop co-operative mobility technologies for supervised vehicle platooning, in order to improve fuel efficiency and safety for goods transport. The potential social and environmental benefits inducted by heavy-duty vehicle platoons have been largely proven. However, until now, the creation, coordination, and operation of such platoons have been mostly neglected. In addition, the regulation and standardization of coordinated platooning, together with its acceptance by the end-users and the society need further attention and research. In this paper we give an overview over the project and present the architecture of the off-board and onboard platforms of the COMPANION cooperative platoon management system. Furthermore, the consortium reports on the first results of the human factors for platooning, legislative analysis of platooning aspects, clustering and optimization of platooning plans and prediction of congestion due to planned special events. Finally, we present the method of validation of the system via simulation and trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view