SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Pillar N) "

Search: WFRF:(Pillar N)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Sabatini, F. M., et al. (author)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Journal article (peer-reviewed)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
2.
  •  
3.
  • Fietze, I., et al. (author)
  • Management of obstructive sleep apnea in Europe-A 10-year follow-up
  • 2022
  • In: Sleep Medicine. - : Elsevier BV. - 1389-9457. ; 97, s. 64-72
  • Journal article (peer-reviewed)abstract
    • Objective: In 2010, a questionnaire-based study on obstructive sleep apnea (OSA) management in Europe identified differences regarding reimbursement, sleep specialist qualification, and titration procedures. Now, 10 years later, a follow-up study was conducted as part of the ESADA (European Sleep Apnea Database) network to explore the development of OSA management over time.Methods: The 2010 questionnaire including questions on sleep diagnostic, reimbursement, treatment, and certification was updated with questions on telemedicine and distributed to European Sleep Centers to reflect European OSA management practice.Results: 26 countries (36 sleep centers) participated, representing 20 ESADA and 6 non-ESADA countries. All 21 countries from the 2010 survey participated. In 2010, OSA diagnostic procedures were performed mainly by specialized physicians (86%), whereas now mainly by certified sleep specialists and specialized physicians (69%). Treatment and titration procedures are currently quite homogenous, with a strong trend towards more Autotitrating Positive Airway Pressure treatment (in hospital 73%, at home 62%). From 2010 to 2020, home sleep apnea testing use increased (76%-89%) and polysomnography as sole diagnostic procedure decreased (24%-12%). Availability of a sleep specialist qualification increased (52%-65%) as well as the number of certified polysomnography scorers (certified physicians: 36%-79%; certified technicians: 20%-62%). Telemedicine, not surveyed in 2010, is now in 2020 used in diagnostics (8%), treatment (50%), and follow-up (73%). Conclusion: In the past decade, formal qualification of sleep center personnel increased, OSA diagnostic and treatment procedures shifted towards a more automatic approach, and telemedicine became more prominent.(c) 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  •  
4.
  • Kattge, Jens, et al. (author)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • In: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Journal article (peer-reviewed)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
5.
  • Kuppler, Jonas, et al. (author)
  • Global gradients in intraspecific variation in vegetative and floral traits are partially associated with climate and species richness
  • 2020
  • In: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 29:6, s. 992-1007
  • Journal article (peer-reviewed)abstract
    • AimIntraspecific trait variation (ITV) within natural plant communities can be large, influencing local ecological processes and dynamics. Here, we shed light on how ITV in vegetative and floral traits responds to large‐scale abiotic and biotic gradients (i.e., climate and species richness). Specifically, we tested whether associations of ITV with temperature, precipitation and species richness were consistent with any of four hypotheses relating to stress tolerance and competition. Furthermore, we estimated the degree of correlation between ITV in vegetative and floral traits and how they vary along the gradients.LocationGlobal.Time period1975–2016.Major taxa studiedHerbaceous and woody plants.MethodsWe compiled a dataset of 18,401 measurements of the absolute extent of ITV (measured as the coefficient of variation) in nine vegetative and seven floral traits from 2,822 herbaceous and woody species at 2,372 locations.ResultsLarge‐scale associations between ITV and climate were trait specific and more prominent for vegetative traits, especially leaf morphology, than for floral traits. The ITV showed pronounced associations with climate, with lower ITV values in colder areas and higher values in drier areas. The associations of ITV with species richness were inconsistent across traits. Species‐specific associations across gradients were often idiosyncratic, and covariation in ITV was weaker between vegetative and floral traits than within the two trait groups.Main conclusionsOur results show that, depending on the traits considered, ITV either increased or decreased with climate stress and species richness, suggesting that both factors can constrain or enhance ITV, which might foster plant‐population persistence in stressful conditions. Given the species‐specific responses and covariation in ITV, associations can be hard to predict for traits and species not yet studied. We conclude that consideration of ITV can improve our understanding of how plants cope with stressful conditions and environmental change across spatial and biological scales.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view