SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Pincus E.) "

Sökning: WFRF:(Pincus E.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Kennedy, J., et al. (författare)
  • Learning and reusing dialog for repeated interactions with a situated social agent
  • 2017
  • Ingår i: 17th International Conference on Intelligent Virtual Agents, IVA 2017. - Cham : Springer. - 9783319674001 ; , s. 192-204
  • Konferensbidrag (refereegranskat)abstract
    • Content authoring for conversations is a limiting factor in creating verbal interactions with intelligent virtual agents. Building on techniques utilizing semi-situated learning in an incremental crowdworking pipeline, this paper introduces an embodied agent that self-authors its own dialog for social chat. In particular, the autonomous use of crowdworkers is supplemented with a generalization method that borrows and assesses the validity of dialog across conversational states. We argue that the approach offers a community-focused tailoring of dialog responses that is not available in approaches that rely solely on statistical methods across big data. We demonstrate the advantages that this can bring to interactions through data collected from 486 conversations between a situated social agent and 22 users during a 3 week long evaluation period.
  •  
4.
  •  
5.
  • Masser, Anna E., 1987- (författare)
  • Controlling protein homeostasis through regulation of Heat shock factor 1
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to thrive in a changing environment all organisms need to ensure protein homeostasis (proteostasis). Proteostasis is ensured by the proteostasis system that monitors the folding status of the proteome and regulates cell physiology and gene expression to counteract any perturbations. An increased burden on the proteostasis system activates Heat shock factor 1 (Hsf1) to induce transcription of the heat shock response (HSR), a transiently induced transcriptional program including core proteostasis genes, importantly those encoding the Hsp70 class of molecular chaperones. The HSR assists cells in counteracting the harmful effects of protein folding stress and restoring proteostasis. The work presented in this thesis is based on experiments with the Saccharomyces cerevisiae (yeast) model with the overall goal of deciphering how Hsp70 detects and impacts on perturbations of cellular proteostasis and controls Hsf1 activity.In Study I we describe the fundamental mechanism by which Hsp70 maintains Hsf1 in its latent state by controlling its ability to bind DNA. We found that Hsf1 and unfolded proteins directly compete for binding to the Hsp70 substrate-binding domain. During heat shock the pool of unfolded proteins mainly consist of misfolded, newly synthesized proteins. Severe out-titration of Hsp70 by misfolded substrates resulted in unrestrained Hsf1 activity inducing a previously uncharacterized genetic hyper-stress program. More insight into regulation of Hsp70 availability was gained in Study II where the two splice isoforms of the Hsp70 nucleotide exchange factor Fes1 were characterized. We found that the cytosolic splice isoform Fes1S is crucial to release unfolded proteins from Hsp70 and that impaired release results in strong Hsf1 activation.In Study III we developed methodology to easily measure the rapid changes in Hsf1 activity upon proteostatic perturbations and to monitor protein turnover using the novel bioluminescent reporter NanoLuc optimized for yeast expression (yNluc). In Study IV we report that yNluc also functions as an in vivo reporter that detects severe perturbations of de novo protein folding by its failure to fold to an active conformation under such conditions.Finally, in Study V we investigated how organellar proteostasis impacts on the availability of cytosolic Hsp70. We found that a lowered mitochondrial proteostatic load as a result of high translation accuracy extended lifespan and improved cytosolic proteostasis capacity, evidenced by more rapid stress recovery and less sensitivity to toxic misfolded proteins. In contrast, lowered mitochondrial translation accuracy decreased lifespan and impaired management of cytosolic protein aggregates as well as elicited a general transcriptional stress response.Taken together, the findings presented in this thesis advance our understanding of how the regulatory mechanisms of the proteostasis system function. Furthermore, they provide novel methodology that will facilitate future studies to improve our understanding how cells integrate internal and external stress cues to control proteostasis.
  •  
6.
  • Mauritsen, Thorsten, et al. (författare)
  • Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2
  • 2019
  • Ingår i: Journal of Advances in Modeling Earth Systems. - 1942-2466. ; 11:4, s. 998-1038
  • Tidskriftsartikel (refereegranskat)abstract
    • A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model. 
  •  
7.
  •  
8.
  • Tapocik, J. D., et al. (författare)
  • Live predator stress in adolescence results in distinct adult behavioral consequences and dorsal diencephalic brain activation patterns
  • 2021
  • Ingår i: Behavioural Brain Research. - : ELSEVIER. - 0166-4328 .- 1872-7549. ; 400
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to traumatic events during childhood increases the risk of adult psychopathology, including anxiety, depression, alcohol use disorders and their co-morbidity. Early life trauma also results in increased symptom complexity, treatment resistance and poor treatment outcomes. The purpose of this study was to establish a novel rodent model of adolescent stress, based on an ethologically relevant life-threatening event, live predator exposure. Rats were exposed to a live predator for 10 min. at three different time points (postnatal day (PND)31, 46 and 61). Adult depression-, anxiety-like behaviors and ethanol consumption were characterized well past the last acute stress event (two weeks). Behavioral profiles across assessments were developed to characterize individual response to adolescent stress. CNS activation patterns in separate groups of subjects were characterized after the early (PND31) and last predator exposure (PND61). Subjects exposed to live-predator adolescent stress generally exhibited less exploratory behavior, less propensity to venture into open spaces, a decreased preference for sweet solutions and decreased ethanol consumption in a two-bottle preference test. Additional studies demonstrated blunted cortisol response and CNS activation patterns suggestive of habenula, rostromedial tegmental (RMTg), dorsal raphe and central amygdala involvement in mediating the adult consequences of adolescent stress. Thus, adolescent stress in the form of live-predator exposure results in significant adult behavioral and neurobiological disturbances. Childhood trauma, its impact on neurodevelopment and the subsequent development of mood disorders is a pervasive theme in mental illness. Improving animal models and our neurobiological understanding of the symptom domains impacted by trauma could significantly improve treatment strategies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy